WirelessWorld
 June 1970 3s 6d

Tester for diagnosing transistor faultos

Communications receiver survey

- Junisig70

Ferrograph Y and P tape recorders for science, industry, broadcasting.

Ferrograph tape recorders are world-famous for their superb quality and many recording facilities. Ferrograph reliability is a by-word. Now Ferrograph introduce a new series of instruments, providing exactly what technical users have been asking for.

All are suitable for full-track, half-track and twin-track operation, all have 3 speeds, solid-state electronics, 3 motors, 3 heads, built-in loudspeakers, $8 \frac{1}{4} \mathrm{in}$. dia. reels with adjustable reel height using standard $\frac{1}{4} \mathrm{in}$. tape, quick start and stop. time-switch operation and
remote control
Series Y recorders are designed specifically for use in laboratories and monitoring services where long-term reliability and consistency of performance are essential. Three models cover the entire speed range from $\frac{18}{18}$ to $15 \mathrm{in} / \mathrm{sec}$. A 4 -channel $\frac{1}{4} \mathrm{in}$. in-line head reproducer having 4 low-level equalised outputs is also available.

Series Pinstruments have been evolved for radio, TV and film recording in studios and for field work. All have 600 Ohm balanced input and output per channel. Plus everything else you expect
from a Ferrograph recorderexcellent performance, robust construction, careful screening, reliability for years on end. Ring or write for details:
The Ferrograph Co Ltd, The Hyde, Edgware Road, Colindale, London NW9, Tel: 01-205 2241, Telex: 27774, or any of the following.
International Distributors Leroya Industries Pty,
266 Hay Street, Subiaco,
Western Australia 6008,Australia: Matelectric
Boulevard Leopold II, 199,
1080 Brussels, Belgium;
H Roy Gray Ltd,
14 Laidlaw Boulevard,
Markham, Ontario, Canada;

Cineco
72 Avenue des Champs Elysees Paris 8 e. France
Henry Wells \& Co, KG,
1040 Wien 4, Danhausergasse 3.
Austria:
Ferropilot GmbH \& Co., KG,
Hamburg 39, Sierichstrasse 43 ,
West Germany:
Hi-Fi Installations,
P.O. Box 2430, 276 Andries Street,

Pretoria, South Africa;
Elpa Marketing Industries Inc, New Hyde Park, New York 11040,
New York, U.S.A.
There are Ferrograph Distributors
also in most other countries.
Please obtain details from the
London office.
Ferrograph

Get your own Multimeter today (complete with plastic case, leads, instruction booklet and a full year's guarantee) from your local supplier, or ask for details direct from Avo.

Vortexion

These electronic Stereo Mixers range from $2+2$ to $5+5$ input channels, with left and right outputs at 500 millivolts into 20 K ohms up to infinity.
Separate control knobs are provided for L \& R signals on each stereo channel so that a Mono/ Stereo changeover switch provided can give from four to ten channels for monaural operation, in which state the L \& R outputs provide identical signals.
A single knob ganged Master Volume control is fitted, plus a pilot indicator.
The units are mains powered and have the same overall dimensions as monaural mixers.
 \title{
STEREO MIXERS
}
 \title{
STEREO MIXERS
}

Also available Monaural Electronic Mixers:-

4 Way Monaural Mixers
6 Way Monaural Mixers
8 Way Monaural Mixers
10 Way Monaural Mixers

3 Way Monaural Mixers with P.P.M.
4 Way Monaural Mixers with P.P.M.
6 Way Monaural Mixers with P.P.M.
8 Way Monaural Mixers with P.P.M.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4 WAY MIXER USING F.E.T.'s. This is high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifer, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. Since the unit is completely free from the input rectification distortion of ordinary transistors, this unit gives that clean high quality that has tended to be lost with most solid state amplifiers.
100 uV on $30 / 60 \mathrm{ohm}$ mic. input. 100 mV to 100 volts on gram/auxiliary input $100 \mathrm{~K} \Omega$.

CP50 AMPLIFIER. An alt silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15$ ohms and 1.00 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

EEV flash flash flash tubes make light of the toughest jobs

For pumping lasers. For strobing. For photography. For any application in which quality, reliability and performance are vital, that's where you'll find EEV flash tubes.

There's almost certainly a flash tube in the EEV range that has the right characteristics for your application and if there isn't we can probably make one!

EEV flash tubes have extra heavy-duty electrodes. They give you long life, with up to 10^{6} flashes, and they
give you high conversion efficiency. Our air-cooled xenon flash tubes have a wide range of input energy levels and can operate at high repetition rates.

Isn't it time you had the full facts about EEV flash tubes? Just post the coupon.

English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone:024561777 Telex:99103 Grams : Enelectico Chelmsford

Crash Dive

This was a Morganite type 81 E Cermet Trimming Potentiometer that didn't make it.
Shame really.
The more so because this particular specimen had already survived several rigorous mechanical and electrical tests. But then, we are unusually strict at

Morganite, because our customers like it that way.
Another thing they like is having the right products at the right time, complete with full technical information to match. So our constant research and development is more than an ivory-tower luxury-it's a common-sense necessity.

We reckon that reliable delivery makes sense too. As you'll see when you ring us for samples for evaluation or development projects. Then you can put our Cermet Trimming Potentiometers through your test routine and watch how they stand up to it.
You'll like what you see.

UHF klystron efficiency? You can rely on it with EEV.

For reliable UHF klystron performance choose from the largest range available today The EEV range. $40 \mathrm{~kW}, 25 \mathrm{~kW}, 10 \mathrm{~kW}, 7 \mathrm{~kW}$ and 5 kW .

Each one offers economy and ease of use, solid-state compatibility and, above all, efficiency-even at low drives.

Broadcasting authorities around the world are using

EEV klystrons for UHF television - proving their operational flexibility, reliability and efficiency in climatic conditions as varied as those of Australia and Finland. To get the full facts about the tube you need, please post the coupon. English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone 024561777. Telex:99103.Grams:Enelectico Chelmsford

Wide range Universal Bridge

Direct readout accurate to 0.1%

Wayne Kerr B224 is a new audio-frequency bridge giving accurate values for the resistive and reactive terms of any component or complex impedance in the range 2 micro-ohms to 500 gigohms. Accuracy: $\pm 0.1 \% ~(\pm 0.3 \%$ for impedances below 10Ω). Frequency: Internal Source $1592 \mathrm{~Hz}\left(\omega=10^{4}\right)$ $200 \mathrm{~Hz}-20 \mathrm{kHz}$ using external source with internal wide-band detector.
Connections: 2-terminal for isolated components. 3 -terminal for in-situ measurements. 4-terminal below 10Ω; cuts lead errors.

Readout: G/R and C/L terms simultaneously. In-line displays with decimal point illuminated. Null meter also indicates correct range. Power: From internal rechargeable battery Ask for B224 data sheet.

Innovation in Electronic Measurement

THE WAYNE KERR COMPANY LIMITED NEW MALDEN SURREY ENGLAND Telephonej01-942 2202 Telex: 262333 Cables: Waynkerr, Malden

Experience:

Since the beginning of industrial r.f. heating, EEV have been the pace-setters. With this experience, backed by our equal know-how in the transmitter valve field, is it any wonder that we are so well known for power triodes?

EEV make power triodes for industrial heating applications from 1 kW up to 250 kW . They are all conservatively rated and realistically designed to give good length of life. Whatever your application -for drying paper, baking biscuits, welding plastic,
treating metal-r.f. heating the EEV way is economical and dependable.

Our sales engineers are at your service to discuss designs and to recommend the best tube or combination of tubes for your particular application.

For full details just post the coupon or telephone Mr.M.J. Pitt.

English Electric Valve Co Ltd. Chelmsford Essex. England. Telephone: 024561777 . Telex 99103. Grams: Enelectico Chelmsford

the vital factor of EEV's industrial r.f. heating power triode range

SPECIFICATIONS

	TYPE TA401	TYPE TA601	TYPE TA605
GAIN	$40 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$	$60 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$	$20,30,40,50$ and $60 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$.
BANDWIDTH $\pm 3 \mathrm{~dB}$	$1 \mathrm{~Hz}-3 \mathrm{MHz}$	$3 \mathrm{~Hz}-1.2 \mathrm{MHz}$	$\begin{aligned} & 20-40 \mathrm{~dB} . \quad 1 \mathrm{~Hz}-3 \mathrm{MHz} ; \quad 50 \mathrm{~dB}, \quad 2 \mathrm{~Hz}-2 \mathrm{MHz} ; \quad 60 \mathrm{~dB} \text {. } \\ & 4 \mathrm{~Hz}-1.5 \mathrm{MHz} . \end{aligned}$
BANDWIDTH $\pm 0.3 \mathrm{~dB}$	$4 \mathrm{~Hz}-1 \mathrm{MHz}$	$10 \mathrm{~Hz}-300 \mathrm{kHz}$	$20-40 \mathrm{~dB}, 4 \mathrm{~Hz}-1 \mathrm{MHz} ; 60 \mathrm{~dB}, 10 \mathrm{~Hz}-300 \mathrm{kHz}$.
INPUT IMPEDANCE	$>5 \mathrm{M} \Omega,<40 \mathrm{pF}$ from 100 Hz to 1 MHz	$\begin{aligned} & \quad>\mathrm{IM} \Omega .<50 \mathrm{pF} \\ & \text { from } 100 \mathrm{~Hz} \text { to } 300 \mathrm{kHz} \end{aligned}$	$>5 \mathrm{M} \Omega,<40 \mathrm{pF}$ from 100 Hz to 300 kHz .
INPUT NOISE	$<15 \mu \mathrm{~V}$. zero source: $<50 \mu \mathrm{~V} .100 \mathrm{k} \Omega$ source	< $15 \mu \mathrm{~V}$. zero source: < $40 \mu \mathrm{~V} .100 \mathrm{k} \Omega$ source	As TA401 and TA601 at 40 dB and 60dB.
POWER SUPPLY	PP3 battery, li	life 100 hours	- PP9 battery, life 1.000 hours, or A.C. Power Unit.
AVAILABLE OUTPUT	IV up to $\mathrm{IMHz}, 300 \mathrm{mV}$ $100 \mathrm{k} \Omega$ and 50 pF	at 3 MHz , into load of	1.5 V up to 2 MHz . IV at 3 MHz , into $100 \mathrm{k} \Omega$ and 50 pF .
OUTPUT IMPEDANCE		100Ω in se	ries with $6.4 \mu \mathrm{~F}$
SIZE AND WEIGHT	$3^{\prime \prime} \times 1 \frac{13}{4 \prime} \times 1$	$1 t^{\prime \prime} 7 \mathrm{oz}$	$2 \frac{1}{2}^{\prime \prime} \times 4{ }^{\prime \prime} \times 5 \frac{1}{\frac{1}{2}}{ }^{\prime} 2 \frac{1}{2} \mathrm{lb}$.
PRICE with Battery and input lead	£17.0.0	f.17.0.0	

LEVELL ELECTRONICS
 LIMITED

QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines. OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms.
DIMENSIONS $-12 \frac{33^{\prime \prime}}{} \times 6 \frac{1}{4}^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{}$
Complete the coupon and post today.
Please send me full details of the QUAD 50 Amplifier
NAME
POSITION.
COMPANY
ADDRESS
(BLOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD.,
HUNTINGDON. Telephone: Huntingdon(0480) 2561/2

SINGLE SOURCE SENSE

OR
 How to get What you Want without Having to Try Very Hard

If your parts requirements are small, and your call-off irregular, you have a problem. If, as often happens, you want parts quickly, you have another problem.
We are in business to help you solve both, quickly.
As stockholders of an enormous range of Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies by Cinch Dot and FT, we are the "single source" for pretty well everything of this kind you want in whatever quantity you want and at short notice.
Two illustrated catalogues. Thousands of stock items are detailed in our two fully illustrated catalogues-Fasteners and Electronics-either of which will be sent, post-free, to firms and organisations.
Send for yours now,
stating which catalogue you require.

Make United-Carr Supplies your

SINGLE SOURCE

for Cinch Dot and FT Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Notts.
Sandiacre 2828 STD 0602392828

= = =TO AMBITIOUS ENGINEERS - THE LATEST EDITION OF ENGINEERING OPPORTUNITIES

Have you sent for your copy?

ENGINEERING OPPORTUNITIES is a highly informative 164 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification andoutlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Division; explains the benefits of our Appointments Dept. and shows you how to qualify for five years' promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. Send TUNITIES" ooday-FREE.

WHICH IS YOUR

 PET SUBJECT? RadioTelevision
Electronics
Electrical
Mechanical Civil
Production
Automobile
Aeronautical Plastics Building
Draughtsmanship B.Sc.

City \& Guilds Gen. Cert. of Education etc., etc.BRITISH INSTITUTEOF ENGINEERING TECHNOLOGY
(Dept. 303B), Aldermaston Court, Aldermaston, Berkshire

PRACTICAL EQUIPMENT

Basic Practical and Theor etic Courses for beginners in Radio, T.Y., Electronics, cte A.M.I.E.R.E. City \& Guilds Radio Amateur's Exam. R.T.E.B. Certificate P.M.G. Certificate Practical Radio Radio Television Servicing Practical Electronics Electronics Engineering Automation

INCLUDING TOOLS!

The specialist Electronics Division of B.I.E.T. NOW offers you a real laboratory training al home with practical equipment. Asi for details.
TOOLS!
The specialist Elec-
tronics Division of
B.I.E.T. NO W
offers you a real lab-
oratory training at
home with practical
equipment.
Ask for details.

POST GOUPON NOW!

Please send me your FREE 164-page "ENGINEERING OPPORTUNITIES"
(Write if you prefer not to cut page)
NAME.
ADDRESS.................................ADDRESS.
\qquad
\square
SUBJECT OR EXAM.
THAT INTERESTS ME.
SUBJECT INTERESTS ME. .
-

\square
\square
\square
\square

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD
WW-018 FOR FURTHER DETAILS

MICROPHONES \& ACCESSORIES

Our range of microphones includes all types, ribbon, omnidirectional and cardioid, with or without switches, for hand or stand use. All microphones are manufactured in a special section of our works, under strictly controlled conditions with stringent test and inspection at every stage. Each and every microphone is individually tested both aurally and on Bruel \& Kjoer visual and graphic recording test equipment for conformity to a prescribed performance. Accessories such as desk or floor stands, wind shields and parabolic reflectors are also well catered for.
Besides microphones, every need of Public Address is met by a wide range of amplifiers, both mains and battery operated, mixers and ambiophonic units, loudspeakers and associated equipment, disc recorder amplifiers and cutter heads.
Please send for fully descriptive literaturne to the firm who back you with SERVIGE

grampian mepaoducers itio hanworth taaolng estate, FEITHAM. MIOOLESEX TELEPHDNE 018994141

DP4

Transformers, Chokes

Saturable Reaciors

Volimobile volitage regulators

Rectilier Sets

Transformers

Air cooled power transformers from 0.5 to 300 kVA at voltages up to 2 kV . 1 or 3 phase, double or auto wound. step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from these designs is buill into every Harmsworth. Townley transformer

High Current Transformers
Years of experience have gone into the de sign and production techniques used in the manufacture of our low voltage, high current transformers for use in fumaces, high temperature research, heating and other applications. These techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices

Voltmobiles

The most robust and useful control device for loads such as furnaces, ovens, bar heating and high temperature research. Our Voltmobiles are in use in their thousands to control transformers and rectifier sets or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are auto-transformers which give control from 1.6% to 100% of input volts. Over-Volts up to 125% of input is also available. Standard models are made for single and 3 phase supply and for outputs from 20 Amps to 200 Amps with on-load switching.

Rectifiers

Sturdily built air cooled equilpment from 50 W to 500 kW for plating; plasma arc welding, electrolytic machining and many other applications. Equipment incorporates either silicon or selenium rectifiers and can be built with fixed or variable out put. Variable outputs are obtained by the use of continuously variable auto transformers, saturable reactors or Voltmobile regulator.

Saturable Reactors

From 5kVA up to 300 kVA for controlling the outputs from transformers or rectifier units.
Saturable reactors are infinitely variable reactors which can control outputs from transformers etc, from 10% to 100% of full output.

Chokes

Specific enquiries are invited

Harmswarth. Tounley
Irunsformers Rectifiers

HARMSWORTH, TOWNLEY \& CO. LTD. 2 Hare Hill, Todmorden, Lancs.

Telephone Todmorden 2601 Extension 22

Which has a d.c. sensitivity of 20,000 ohms per volt? Which has an a.c. sensitivity of 2.000 ohms per volt?

Which has a d.c. accuracy $\pm 2 \frac{1}{4} \%$ F.S.D.?
Which has an a.c. accuracy $\pm 2 \frac{3}{4} \%$ F.S.D.?
Which maintains a.c. accuracy to $20 \mathrm{kc} / \mathrm{s}$?
Which provides high voltage probes to
 extend the range to 25 or 30 kV d.c. for testing electronic equipment with high source impedance?

Which provides probes that can be used with any other meter of similar sensitivity?
Which type of case would you like?
Leather or Vinyl. Both available.
Which meter makes every user a devil's advocate for its performance 'and handiness?

The pocket size Minitest

Get the catalogue for a full briefing.

SALFORD ELECTRICAL INSTRUMENTS LIMITED
Peel Works, Barton Lane, Eccles,
Manchester M30 OHL
Telephone 061-7895081 Telex 66711
A Member Company of GEC Electrical

Components Ltd.

And now Erie have added the NEW 500 SERIES to their wide range of hot moulded track potentiometers. Quiet potentiometers that retain low noise levels through a long operational life (upwards of 100.000 cycles).
With the 500 Series comes reduction in size, improved mechanical construction and improved reliability PLUS all the advantages of the standard range: hot moulded track element of large cross-sectional area giving low current densities, high voltage ratings and eliminating local high spots and
over-heating. Less wear, longer life. The 500 Series includes single and dual ganged, and dual concentric versions. With or without mains switch.
The NEW DOUBLE BRUSH MECHANISM glides over the large cross sectional area hot moulded track witr low noise, low torque and increased reliability.
An integral moulding of base, track and terminals gets rid of solders, rivets, welds ; provides excellent humidity characteristics and fewer mechanical joints. And Erie provide you with a good choice of resistance
values, from 47Ω to $2.2 \mathrm{M} \Omega$ linear 1 W , and from $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ non-linear $\frac{1}{2} \mathrm{~W}$.
Cases are in glass filled nylon; spindles are of plastic or steel.

Let us send you the 500 Series datatoday. We'll also include details of our full range.

ERIE ELECTRONICS LTD
Great Yarmouth, Norfolk.
Telephone: 04934911
Telex: 97421

REFLEX KLYSTRONS are among the range of microwave tubes available from EMI-Varian. Frequencies from 1.5 GHz to 40 GHz are available and ${ }_{s}$ CW power outputs range from 10 mW to 4 W . Applications include radar, industrial and military research, communications, education, and Doppler techniques.
The example illustrated is the R9546, a Q(KA) band signal source mechanically tunable over 323 GHz to 37.5 GHz . Power output at 2 kV is :ypically 50 mW to 70 mW CW

Tuner design provides a high degree of frequency stability and freedom from microphony. British Services flange is normally supplied, International standard flarge if requested. The unique capability of EMI-Varian in research, design development and manufacture of microwave tubes and devices and associated components is at your service. To ensure that you are kept continuously in touch with the latest developments in microwave tube technology, contact:

"Studio 80" amplifier

The "Studio 80" Power Amplifier has been produced to high performance standards for Studio and Laboratory applications.

Its proven characteristics puts it in a class beyond anything yet available in power, performance, and price, and is the ultimate in economic functional engineering design - Write for full details of guaranteed performance specification

POWER OUTPUT: POWER BANDWIDTH: FREOUENCY RESPONSE: TOTAL DISTORTIDN SIGNAL TO NOISE RATIO: POWER SUPPLY:

Max 80W into 8 ohm
5 Hz to 35 KHz at 80 W
+0 dB
-5 dB
-5 Hz to 20 KHz
Less than 0.05 at 1 KHz .
Better than -95 dB below maximum output. $100 / 120-200 / 250 \mathrm{~A} / \mathrm{C} 50-60 \mathrm{~Hz}$.

P.R.F. -0.01 Hz to 10 MHz

* single or double pulse output * true double PULSE OPERATION with independent control of outpu width, delay, amplitude and polarity. * RISE TIME 10 NANOSECONDS. *MAXIMUM PULSE AMPLITUDE is 20 V into 'open circuit', or 10 V into 50Ω * PRICES FROM £118.
Component modules available: Power Supply, Trigger Unit, PRF Generator, PRF Divider, Delay Unit, Pulse Width Unit, Output Unit. Variable Slope Output Unit

For full details, please contact us at the address below. (Please state if you require literature on Full Range of Power Supplies, Electronic Instruments and Digital Logic Equipment)

FARNELL INSTRUMENTS LIMITED, Sandbeck Way, Wetherby, LS22 4DH, Yorks. Telephone: 0937 3541/6
London Office: Telephone: 01 802/5359

Not onlybeautiful, but...

* Lightweight
* Tropicalized
* Practically unbreakable
* High impedence, high level phones * Carbon microphones available * Extremely comfortable
* Simple to service.

The new 'Astrolite' headset has been adopted by many of the leading Television, Broadcasting and Programme companies for studio and O.B. use, and no wonder.

It's fully interchangeable with all known carbon level systems. No more of the 'snap, crackle and pop', just the message, clear and reliable, using our new noise - cancelling high quality moving-coil microphone with integral amplifiers.

AMPLIVOX COMMUNICATHONS
 LIMITED

${ }^{\top}$ NO1 inSolder

ENTHOVEN offers you Europe's Widest Range

One good reason for soldering with Enthoven - whatever your needs - is the Enthoven range. It gives you a wide choice of high quality products developed for use with modern techniques. It includes Flux Cored Solder Wires, Solder Pre-forms, Solid Solders, selective Fluxes, solder specialities, materials for printed Circuitry and for soldering Aluminium. For complete technical details of Eurape's widest range, ask Enthoven Solders Limited, Dominion Buildings, South Place, ----- London EC2. Telephone 01-628 8030; telex 21457; cables: [---ENTHOVEN LONDONEC2

SOLDER PRE-FORMS

WASHERS • DISCS • PELLETS

 RINGS • RIVETS • SHIMS GASKETS • COLLARS • TAPE STRIP • SHEET • RIBBONS SPIRALS • CROPPINGS • COILS SPHERES • ARMATURE WEIGHTS DIAPHRAGM WEIGHTS LEAD WEIGHTSAvailable in a wide range of sizes and specifications-flux cored and solid-standard grade or high purity** (*up to 99.99995\%)

used as standards in many industries

[^0]Anders means meters

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers avaliable on request Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery

anders electronics limited

48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092

Nombrex accuracy!

R.F. SIGNAL GENERATOR MODEL 31 Price f12. 10. Od

We consider this instrument to be the best R.F. Signa Generator on the market today at its price. No amateur radio enthusiast or educational establishment should be without one

Note a few of the specification details below:-

- Wide range $150 \mathrm{KHz-350} \mathrm{MHz}$.
- Accuracy better than 2%.
- R.F. Output, or modulated 400 Hz .
- A.F. Signal available externally.
- Output average 100 mV overall.
- Continuously variable attenuator.
- Fully transistorised circuitry.
- Provision for external supply.

All Nombrex instruments are guaranteed against defective parts or faulty manufacture for 12 months

Trade \& Export enquiries welcome. Send for full technical leaflets. Post and Packing 6/6d. extra.

NOMBREX (1969) LTD. EXMOUTH DEVON Tel: 03-952 3515

The answer-everything.
It took years of intensive research and development to perfect every little part that goes to make the Hawker Harrier.

And these specially developed components include Gardners Transformers.
Many people seem to think that Gardners only provide 'off-the-shelf' equipment.
It isn't true-80\% of our production is for special components.
We design and develop highly specialised transformers for Defence projects, Radar, Sonar, electronics, control systems and similar sophisticated equipments.

Of course, we don't expect everyone to be making things like aircraft that don't need runways.
They wouldn't be special any more.

Incidentally, Gardners manufacture the largest standard range of transformers in Europe. So even our un-specials are special!
Comprehensive publications available on request include.
Microohone and Line Matching Transformers GT22.
Microminiature Transformers GT12.
Audio Transformers GT4.
Inverters GT21
Saturable Reactors GT1.
Low Voltage, Isolating and Audio Transformers GT17.
Transformers for Tube Type Circuits GT24.

GARDNERS TRANSFORMERS LIMITED, Christchurch, Hampshire BH23 3PN.
Tel: Christchurch 2284. (STD 02015 2284)
Telex 41276 GARDNERS XCH.

This

new

range of AIR SPACED VARIABLE CAPACITORS and TRIMMERS

CATALOGUE AVAILABLE NOW!

Send today for our NEW LIST 300 detailing our wide range-from miniature air spaced trimmers up to large high voltage
transmitting capacitors.

SUB MINIATURE TRANSFORMERS
We have facilities for the manufacture of miniature transformers to customers' own designs-and would welcome any enquiries.

Write today for complete details
H. TINSLEY \& CO LTD • WERNDEE HALL

SOUTH NORWOOD \cdot LONDON SE25•01-654 6046

leaders in the field of custom hybrid microcircuits

REPAIR SERVIGE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

Three of them shown are part of the new family of Power Packs in the Series 10 range. These compact power supply units give you high performance and top quality at an economical price. It's worth finding out more about the Series 10, so write to-day. P.S. Our other model illustrated is for display only.

A.P.T. ELECTRONIC INDUSTRIES LTD., CHERTSEY ROAD • BYFLEET • SURREY TEL: BYFLEET $41131 / 4$

Now you can get a fully equipped CCTV studio from GVS for as little as $£ 3,000$

No matter what your CCTV requirements are, General Video Systems have the answer - with their wonderful range of SHIBADEN equipment. The result of extensive Research and Development, SHIBADEN equipment has been designed to a modular concept which means that you can fit and furnish your own CCTV studio for as little as $£ 3,000$.
The widespread need for this type of package deal within industry, commerce and education fields are numerous. And each individual requirement can be met from the simplest operation to a full broadcast studio.
If you are about to invest in CCTV equipment or would like to discuss your requirements, let GVS "put you in the picture"

Write or telephone

GENERAL VIDEO SYSTEMS LTD.
Main Distributors of SHIBADEN Equipment 61-63 Watford Way, Hendon. London NW4. Telephone: 01.202 8056

- Registered trade mark of Cloude Lyons Limited

With every Claude Lyons Reguiac comes the benefit of 35 years' experience in variable transformers. Regulacs come in hundreds of models from small single units for laboratory or instrument use to large ganged assemblies for high-power 3 -phase operation at outputs from 210VA to 28.8 kVA and above.

The range includes portable, dual-output and oilimmersed models plus many high-frequency and special types-and is constantly being extended.

Regulacs provide smooth, continuous adjustment of voltage output from zero to line voltage and above, either hand-operated or motor-driven. No device is more useful, versatile and reliable for the control of $A C$ voltage.

ILFor full details write to Publicity Department, Hoddesdon Claude Lyons Limited
Hoddesdon, Herts. Hoddesdon 67161 Telex 22724 76 Old Hall Si., Liverpool L3 9PX. 051-227 1761 Telex 62181

Headsets have come a long way since the old days of "2 LO calling"

 \author{

}
in the forefront then in the forefront now...
SGBRDWN present superlative examples from the CURRENT RANGE OF FINE AUDIO EQUIPMENT LQUMENT

4 Cl 100 Serics ${ }^{*}$ Military Lightweigh Boom Micro Micro- phone and Headset
 assembly. Widely used in Military and Civil Applications.

Why are you wise to choose headphones by Brown? You invest in half a century's experience! From radio's cradle days - with " 2 LO calling" cat's whisker and crystal - S G Brown have led the way. More than ever today they supply the need for the newest and best in head set design. Send today for further details

ENVOY $4 B 600$ Series" Lightweight and robust the ENVOY is built to withstand vigorous useage yet elegantly
designed to suit the most discerning user. Specially
recommended for Air Traffic
Controllers, Air Crew and Teachers in Language Leboratory applications.

Connoisseur ${ }^{\circ}$ Precision in Sound

B.D. 2 COMBINED TURNTABLE AND PICK-UP ASSEMBLY. quality Performance at a REALISTIC PRICE

Featuring:

* Belt drive turntable with S.A.U. 2 arm operated by hydraulic lift and with lowering device.
$\star 33 \frac{1}{3}$ and 45 r.p.m.
* Virtually silent.
* Anti-vibration springs.
* Available as chassis only or on teak plinth.

* Features S.A.U. 2 arm with new headshell and lateral adjustment.

Prices and full details from:
A. R. SUGDEN \& Co. (Engineers) Ltd, Market Street, Brighouse, HD6 1DX, Yorkshire. Tel. 2142

An easily adjusted hand tool for the accurate bending of resistor, capacitor, diode leads, etc., for printed circuits. Will bend leads to within $\frac{1}{16}{ }^{\prime \prime}$ of ends of components and
 up to $3 \frac{1}{4}^{\prime \prime}$ centres.
Infinitely adjustable between $0^{\prime \prime}$ and $1 \frac{3}{4}$ " to suit component body length. All type lead diameters accommodated. Overall Dimensions $\frac{7}{8}^{\prime \prime} \times 3 \frac{1}{2}{ }^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$.
Price: 57/6d.
TRIO INSTRUMENTS LTD.,
BURNHAM ROAD.
DARTFORD, KENT. Telephone: Farningham 2082.

Enter Sansui, and a new era in tape deck performance.

This is the all-new Sansui SD-7000 A quality 2 -speed 4 -track tape deck, it is the end product of three years of research and 10 prototype models. Our reputation as Japan's foremost audio-only specialist goes on the line with it. But we're confident that reputation is secure.

The SD-7000 compares favorably with the most expensive taping units on the market. Very favorably. Here's how it shapes up

Three motors, four heads. Automatic Reverse, Repeat and Rewind
either by recording 20 Hz signals or attaching sensing strips. Special Tape Protection Circuit and built-in Tape Tension Switch. FET-equipped 3stage equalizer circuit, separate Volume controls for two line inputs, plus a headphone Volume control. Automatic resetting reel clampers. Self-locking Pause switch. Sleep switch that automatically cuts off power. Tape travel direction lamps. All pushbutton operation. Rear illuminated VU meters. Source/Playback tape monitor switch and Stereo/

Mono $L+R$ recording mode switch. Six-position voltage selector. Output level attenuator switch.

The SD-7000 takes an honored place in the ranks of quality audio products, and presages a new era in tape deck performance.

But for those who know Sansui, it is no less an achievement than what was to be expected. Available soon at authorized dealers.

Sansui

England: BRUSH CLEVITE COMPANY LIMITED Thornhill, Southampton Sog 1QX Tel: Southampton 45166 /Ireland: RADIO CENTRE 122A, St. Stephen's Green, Dublin 2 / West Germany: COMPO HI-FI G.M.B.H. 6 Frankfurt am Main, Reuterweg $65 /$ Switzerland \& Liechtenstein: EGLI, FISCHER \& CO, LTD. ZURICH 8022 Zurich, Gotthardstr. 6, Claridenhof / France: HENRI COTTE \& CIE 77, Rue J.-R. Thorelle, 77, 92-Bourg-la-Reine / Luxembourg: MICHAEL SHEN, EUROTEX 12, Route de Thionville / Austria: THE VIENNA HIGH FIDELITY \& STEREO CO. 1070 Wien, Burggasse 114 / Belgium: MATELECTRIC S.P.R.L. Boulevard Léopold II, 199, 1080 Brussels / Netherlands: TEMPOFOON BRITISH IMPORT COMPANY N.V. Tilburg, Kapitein Hatterasstraat 8, Postbus 540 / South Africa: GLENS (PTY) LTD. P.O. Box 6406 Johannesburg / Southern Yemen: BHICAjEE COWASJEE LTD. Steamer Point, Aden / Italy: GILBERTO GAUDI s.a.s. Piazza Mirabello 1, 20129 Milano Tel. $664981 /$ SANSUI ELECTRIC CO., LTD. FRANKFURT OFFICE 6 Frankfurt am Main; Reuterweg 93, West Germany / SANSUI ELECTRIC CO., LTD. 14-1, 2 -chome, Izumi, Suginami-ku, Tokyo, lapan

SHRINK YOUR SWITCHING PROBLEMS...

with 4 new improved miniature relays from Associated Automation

Mercury Wetted Contact Relay Type EBRM: Height only 10 mm for low profile pcb mounting; 20 mW bi-stable, 40 mW single-side-stable; operate time Ims nominal at max. coil power; life over 25×10^{9} operations at rated load of 100 VA ; bounce-free for both Form C or D contact resistance.

Hermetically Sealed Relay Type TF:
All-welded, T. 0.5 transistor can envelope giving high isolation switching with high shock and vibration characteristics; full CPL approval for standard versions; switching capability 1 amp at 28 V D.C. to low level; single and double pole; operate powers down to 40 mW .

Dry Reed Relay Type ERMC/D/E:
Miniature open, shielded and encapsulated styles with up to 5 poles, offering all the advantages of reeds at low cost; standard relays operate from 35 mW depending on contact arrangement; electrostatic shielding. high voltage insulation and low thermal types can be specified; life expectancy 10×10^{6} operations at full load, contact rating 10 VA .

Enclosed Industrial Relay Sorios 20:
Wide range of coils, contact arrangements and mountings; up to 6 poles, up to 5 amp 100 W : life over 10×10^{7}. operations; single or twin contacts in wide range of materials; low-priced, readily available, easy to apply.
All these illustrations are full size.

Whatever your switching problem - we can reduce it to size. These new additions increase an already comprehensive range of switches and relays for all communication and control purposes. All competitively priced and backed by Britain's most outstanding applications engineering service. Try us . . . for size.

Sansui defines definitive sterco.

Over the years, a lot of people have expended a lot of words trying to come up with the answer to just what constitutes truly definitive stereo.

At Sansui, we spent those years differently. Researching, experimenting, testing and evolving. And we can now tell you in all honesty that we feel we have the answer. Actually, we came up with a number of answers, but among the best is this system which incorporates the 60 watt AU-555 Solid State Control Amplifier and the matching TU-555 AM/FM Multiplex Stereo Tuner.

There's a lot of meaning in those letters and numbers. AU-555, for
example, means a power bandwidth of from 20 to $30,000 \mathrm{~Hz}$, a distortion factor of 0.5% or less, advanced SEPP-ITL-OTL circuitry and more versatility than any other control amplifier in its power and price range.

TU-555, engineered for complete compatibility with the $A U-555$, means among other things, advanced FET circuitry for new standards in FM sensitivity and selectivity, automatic stereo switching, channel separation of 35 dB , an improved noise canceler and a unique round tuning dial for easier station selection.

Together, they constitute part of the answer. But the full significance
doesn't emerge until you add the 25 watt 2-way 2 -speaker SP-50 stereo speaker systems, professional model 2 -speed turntable SR-3030BC, and 2way 4 -speaker SS-20 stereo headphone set.

Nothing ill-defined about any of those components. And taken as a system, they constitute a very advanced, very complete answer to just what definitive stereo should be.

But you've got to hear the answer to appreciate it. At your nearest authorized Sansui dealer soon.

Sumsui

England: BRUSH CLEVITE COMPANY LIMITED Thornhill, Southampton S09 10X Tel: Southampton 45166 /Ireland: RADIO CENTRE 122A, St, Stephen's Green, Dublin 2 / West Germany: COMPO HI-FI G.M.B.H. 6 Frankfurt am Main, Reuterwe 65 /Swltzerland \& Llechtenstein: EGLI, FISCHER \& CO. LTD. ZURICH 8022 Zurich, Gothardstr. 6, Claridenhof / France: HENRI COTTE \& CIE 77, Rue J.R. Thorelle, 77, 92-Bourg-la-Reine / Luxembourg: MICHAEL SHEN, EUROTEX 12, ROUte de Thionville / Austria: THE VIENNA HICH FIDELITY \& STEREO CO. 1070 Wien, Burgasasse 114 / Beigium: MATELECTRIC 5.P.R.L. Boulevard Léopold II, 199,1080 Brussels / Netherlands: TEMPOFOON BRITISH IMPORT COMPANY N.V. Tilburg, Kapitein Hatterasstraat 8, Postbus 540 / South Africa: GLENS (PTV LTD. P.O. Box 6406 ohannesburg / Southern Yemen: BHICAJEE COWAS /EE LTD. Steamer Point, Aden / Italy: GILBERTO GAUDI s.a.s. Plazza Mirabello 1, 20121 Milano Tel. 664981 , SANSUI ELECTRIC CO., LTD. FRANKFURT OFFICE - Frankfurt am Main, Reulerweg 93, West Germany/SANSUI ELECTRIC CO., LTD. 14-1, 2-chome, Izumi, Suginami-ku, Tokyo, Japan

JACKSON

THE BIG NAME IN PRECISION COMPONENTS

JACKSON BROTHERS

have acquired the manufacturing rights of WAVEMASTER

Trpe 95 S.L.C. Law Ball bearings, $\frac{7}{0}$ dia. fixing bush. Front area $1 \frac{1}{*}^{\prime \prime} \mathrm{w} . \times 1 \frac{1}{\frac{1}{2}} \mathrm{~h}$.

Type 87 S.L.C. Law Plain bearings, $z^{\prime \prime}$ fixing bush. frontareal $1 H^{*} w . \times 1 z^{\prime \prime} h$.
'Wavemaster' variable capacitors have brass vanes and a single ceramic end plate. All have $0.248^{\prime \prime}$ spindles, extended both ends for ganging by means of our Universal Couplings. All are designed for S.W. working and for one hole fixing. 6 mm spindles to order if required. Various capacitances. Largest vane packs 300 pF 0.017 air gap, 50 pF 0.64 alr gap.

Type 92 Modified S.L.C. Law (S.W. Tuning) Plain bearings, $f^{\prime \prime}$ dia. fixing bush。front area $1 \mathrm{H}^{\prime \prime}$ w. $\times 1 \mathrm{f}^{\prime \prime} \mathrm{h}$.

STAND-OFF INSULATORS

Jackzon stand-off insulators are designed to perform well in rigorous enviranments. Thalr insulation rasiseance oxceeds 20 million megohms oven when atmospheric humidity is high. (They meat British Services cost spacification DEF5334.) They will withstand high steady voleages and intense r.f. fields. forty different types: ask for catalogue.
Working voleages up to lokV.
Stoved-on silicone treatment : water repellent.

- Ceramic bodies.
\star Silver-plated rags
\star No solder. No plastic. No adhesives.

NEW FLEXIBLE SHAFT COUPLING

This new shaft coupling embodies the same well tried principles used in our Couplings. Only $\begin{aligned} & \text { sind } \\ & \text { in } \\ & \text { diameter, }\end{aligned}$ fin. long, permits constant velocity coupling and mis-alignment of -005in. and 15°. Robust too. Can take l5lbs in. torque.

TYPE C2I VHF FM

 GANG CAPACITORC21 Miniature VHF 2,3 or 4 Gang Front $.55^{\prime \prime} \times{ }^{-81}$.
Solld brass silverplated stators 500 v

test. 14 pF per section. 3 : I Gear Drive.

It's reliable if it's

made by Jackson!

Write for literature

JACKSON BROS. (London) LTD.
DEPT. W.W. KINGSWAY-WADDON CROYDON, CR9 4DG
Phone: Croydon 2754-5 (01-688) 'Grams: Walfilco, Croydon U.S. office : M. Swedgal, 258 Broadway, N. York, N.Y. 10007

Aldaruits

MICRO
 SOLDERNG INSTRUMENTS

A range of micro soldering instruments combining high performance with really small dimensions and providing exceptional versatility.

Weighing about $\frac{1}{2}$ oz. (less flex) these miniature tools ensure the utmost accuracy and safety in use, resulting in consistently high standards of soldering with minimum operator fatigue.

Ultra-slim unbreakable nylon handles give a cool, comfortable grip for sustained delicacy of operation.

Slip-on bits are fitted over the element shaft, so absorbing all the heat produced and giving high performance with rapid heating and recovery. A wide range of interchangeable tip sizes is available to suit different types of work.

There are six ADAMIN models to choose from, 5 to 24 watts, in voltages from 6 v . to 240 v .

Please ask for leaflet A5.

LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL Tel: 01-688 8589 \& 4559

WW-048 FOR FURTHER DETALLS

OMRON PRECISION CONTROLS

VARIABLE TRANSFORMERS * OUTPUT 0-260V \quad INPUT 230V 50/60CPS

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment.

50 AMP 0-24V DC L.T. SUPPLY UNIT

1 amp £5.10.0

2.5 amp	£6.15.0	8 amp f14.10.0	12 amp f21.0.0
5 amp	£9.15.0	10 amp f18.10.0	20 amp f37.0.0

COMPLETE PHOTO-ELECTRIC

SENSOR in one unit

* reflective type with BUILT-IN LIGHT SOURCE - WILL ALSO OPERATE FROM remote light source
* matchbox size
* SENSES ANY OBJECT-

SENSES ANY OBJECT-
COLOURS, THICK SMOKE

Operates from 12 V.A.C. Output signal 0.2 amp 100 V .
£5.10.0 \qquad

SOLID STATE VARIABLE VOLTAGE CONTROL

- Output 25-240V
- Input 240 V 50 CPS
* $5 \mathrm{amp} \& 10 \mathrm{amp}$ models
* Completely saaled

5 amp model
£8.7.6
10 amp model
f13.15.0

PARIS ANO COMPONENTS FOR telecommuncaion enginering

 aND ELECTHONCSEXPORT-IMPORT

RC-Elements	\square Resistors
	\square Capacitors
	\square Potentiometers
Electromechanical	\square Connectors, sockets
Components	\square Switches
	\square Relays
	\square Pilotlamps
	\square Rotary buttons
	\square Microphones
Electroacoustic	\square Earphones
Components	\square Loudspeakers
	\square Transformers
Miscellaneous Parts	
and Components	\square Fluorescent tube and mercury-
	\square vapourlamp adapters
	\square Perrites
	\square Permanent magnets
	\square Aerials

IMPORT

EGENTOMODUL

BUDAPEST

ELEKTROMODUL

Hungarian Trading Company for Electrotechnical Components
BUDAPEST, XII., VISEGRADI UTCA 47 a-b
Telephone: 495-340; 495-940. Telex: 3648; 3649

Never Built a Kit Before? Why not prove how easy it is the HEATHKIT way. Build one of these beginner kits.

FM Stereo Tuner/Amplifier Unbeatable Value Kit K/AR-17 $£ \mathbf{3 6} \mathbf{- 1 0}$ Carr. $1 / 1 /$ (Cab Exira)

A Schlumberger Company

Deluxe SW Receiver Many extras for price Kit K/GR-54 E48-16 Carr. 9/-

DAYSTROM LTD, GLOUCESTER,GL2-6EE Tel.: 29451

Top Value-Powerful output Kit K/CR-1 $\mathbf{~ 1 1 2 - 1 2 ~ C a r r ~ 5 / - ~}$

RF Signal Generator $100 \mathrm{KHz}-200 \mathrm{MHz}$

Kit K/RF-1U E15-18 Carr. 61.

7AC, 7DC.
7 ohm ranges
Kit K/IM=18U f16-14 Carr. 5/.

AM/FM Radio
Looks Good-Luxury Sound Kit K/Severn £18-18

Carr. 51

QUARNDON NEW PRODUCTS

NEW REVERSIBLE COUNTER MODULE

An important addition to the range of integrated circuit decade counter modules manufactured by Quarndon Electronics Ltd., is the DCM1711 reversible or up/ down counter. These modules use TTL logic elements and incorporate readout on a numerical indicator tube.

The DCM1711 reversible counter is intended for industrial control and counting applications at up to at léast 15 MHz in either direction. The unique carry/borrow circuit simplifies the wiring between modules and provides a zero sense output for sign change purposes. Another decade counter module, designed for general purpose counting and frequency measurement, is the DCM1709 which will operate at
up to 10 MHz . An alternative version of this counter is the DCM 1708 which has a discrete component decoder-tube driver giving the clearest possible display. Where a static readout is required whilst counting is in progress. the DCM 1749 is available incorporating a store. BCD outputs are available on all modules and provision is made for the display of a decimal point. All modules fit a standard ISEP rack.

For further information WW200

DCM 1711 REVERSIBLE COUNTER MODULE NEW PRICES FOR SGS LINEAR INTEGRATED CIRCUITS

Large price reductions have just been announced by SGS (UK) Ltd on their extensive range of linear integrated circuits. The new prices are as follows:-

	1-24		25-99			$100+$		
£	s	d	£	s	d	£	s	d
1	0	3		16	3		13	6
1	4	9		19	9		16	6
2	2	9	1	14	3	1	8	6
2	2	9		14	3	1	8	6

For further information WW2O1

NEW TTL ELEMENTS SN74153N DATA SELECTOR

One of six new Texas Instruments data selectors and decoders, the SN74153N is a dual four input multiplexer. Separate strobe inputs are provided for each section.
Price (1-29)
£2.13.2.
SN74180N 8 BIT PARITY GENERATOR
The SN74180N will generate either an odd or even parity bit for the 8 bit word applied to its inputs. Several SN74180N devices can be cascaded for longer word lengths.
Price (1-29)
£5.5.7.

SN7486N EXCLUSIVE OR ELEMENT

The SN7486N contains four 2 input exclusive $O R$ gates. These elements are used widely in digital systems, such as applications requiring error detection, comparison schemes and counting.
Price (1-29)
£1.12.7.

SN74121N MONOSTABLE

The SN74121N high performance monostable multivibrator or one shot, can be triggered by negative going edge applied to either of the A inputs or by a positive going voltage applied to the B input which incorporates a Schmitt circuit. Internal components provide a delay of 50 nS . but this can be extended to 40 Seconds with external capacitor and resistor.
Price (1-29)
£2.8.3.

For further information WW202

TELEPHONE
(0332) 32651

This is the attractive new space maker, precision-built to get things organised for you ... loads of space to keep your hundreds of parts in perfect safety. This steel-strong 12 -drawer unit comes to you in a lustrous finish of grey or deep bronze green. Size: $24^{\prime \prime}$ wide, 13" high and $12^{\prime \prime}$ deep. (Supplied with 12 special drawer-dividers free)
ORDER DIRECT FROM THE MANUFACTURER - USE THE COUPON BELOW

[^1]

On Goldring's 850 cartridge, even the price is magnetic.

Fact : magnetic cartridges are more compatible with transistor amplifiers than crystal cartridges Fiction : magnetic cartridges are too expensive to warrant use with any but the more sophisticated units.
Now, there is a magnetic cartridge at a price within easy reach.
The 850 assures you of true tracking, superior sound quality and minimal groove destruction. But unlike most magnetic cartridges, its British. It's made by Goldring!
At $£ 6 / 10 / 0$, that's really magnetic.
(tax paid.)

Send for details on the complete range of Goldring Hi Fi Equipment.
Goldring Manufacturing Co. (Great Britain) Ltd.,
486/488 High Road, Leytonstone, London E.11. Tel: 01-539 8343

DTL-ECL-HTL-TTL

THERE ARE OVER 140 MORE LOGIC CARDS LIKE THIS FOR YOUR SYSTEM BACKED UP BY OUR DESIGN AND ENGINEERING FACILITIES

For Inner Core Ejection and Heated Wirestripping Miniature Soldering and Electronic Instrument Work

USE W.T.C. Wire Electors, LUCO Elecerically Heated Wire Strippers (see illustration), Finest Soldering Needles, Box Joint Miniature Cutters and Pliers Including Tip Cutting Pliers, Printed Circuit Crimping and Cutting Pliers, Torque Wrenches and Piercing Punches. If you require quality tools ask for Catalogue WWI7O

STONEHILLS HOUSE WELWYN GARDEN CITY WELWYN GARDEN 25403

WW-064 FOR FURTHER DETAILS

hatfield instruments lto. Dept ww. Burtington way. Plymouth Ple 3lz, Devon Telephone: Plymouth (0752) 72773/5. Telegrams: SIGJEN PIymouth. Telex: 45592 Telephone: Plymouth form prompt service and delivery contact: Hatfield Instruments (NZ) Ltdi. P.D. Box 561, Napler, New Zealand.

HATFIELD BALUN

Suit your broad hand microwave

 needs-

AND YOUR POCKET

with the E.I.P.
 $0.7-18.0 \mathrm{GHz}$ SPECTRUM ANALYZER

- $0-18 \mathrm{GHz}$ variable dispersion-you can see source harmonics without changing range
- YIG iuned Crystal Video Detector - no self generated spurrii
- Dynamic Range: 60 dB
- Frequency range can be extended down to 50 MHz
- Can be used with the scope in your lab.
available for demonstration NOW

Write for full technical information and prices to:

auriema Itd.

23-31 King Street,
London W3
Telephone: 01-9925388

WW-060 FOR FURTHER DETAILS

THE DOLBY SYSTEM

The inside story -

Here we show one of the precision built glass-fibre circuit boards which are the heart of the Dolby A301 Audio Noise Reduction System.
The Dolby A301 is an entirely new type of compression/expansion system which is designed to combat tape noise, landline noise, and other noises generated in high quality audio recording or transmission channels.
The Dolby System provides a $10-15 \mathrm{~dB}$ improvement in signal to noise ratio without adding distortions or undesirable side effects of its own. This remarkable result is achieved by the use of a unique low-level compression/expansion technique which leaves peak level signals wholly unaffected. Of equal importance, the frequency spectrum is split into four separate bands, the compression/expansion action working independently in each.
The Dolby A301 is now in regular use in 26 countries by over 200 companies including Decca, Pye, RCA, Columbia, Deutsche Grammophon, the BBC, the EBU, Swedish Radio, Canadian Broadcasting, and many others.
Write today for full technical details.

DMM2

Measures :-
DC \& AC Volts $200 \mathrm{mV}-1000 \mathrm{VFS}$ DC \& AC Current 200 HAFS External shunts extend ranges to 2 A. Ohms 200 2 - 2 M Ω FS Operates from AC Supply. External 12 V DC or optional rechargeable battery pack.

Digital Multimeter Stability LSIReliability
Dual Slope Integration Single LSI chip performs all counting and storage functions. Full overload protection.

I WOULD LIKE
\square a demonstration
\square A COPY OF THE DMM2 LEAFLET

[^2]POSITION
COMPANY

'With a Weircliffe Bulk Eraser you can clean a tape whistle-clean without even taking it from the can'

'Now he tells me'

Let's come clean. Weircliffe Bulk Erasers are, quite simply, the best yuu can buy.

Magnetic tape/film - up to a maximum of $16^{\prime \prime}$ diameter $\times 35 \mathrm{~mm}$ width or $14 \frac{1}{2}^{\prime \prime} \times 2^{\prime \prime}$ - can be instantaneously erased. Which means you can handle up to 250 tapes in an hour. And you can, we promise you, even clean a tape while it's still in its can.

What's more, nobody has yet produced a tape or recorded a signal - whether it's data, audio, pulsed or video - that can't be clearly erased to between 80 dB and 90 dB below saturation recording level. Weircliffe Bulk Erasers have a greater erase factor than any other known make.

Weircliffe Bulk Erasers have been tested and tested by tape manufacturers and technical institutes throughout the world. They're used by broadcasting authorities from Australia to Finland. They're approved and supplied by the major manufacturers of data recording equipment.

WW-058 FOR FURTHER DETAILS

TELEPRINTERS •PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

Codes: Int. No. 2 Mercury/Pegasus, Elliot 803, Binury and special parpose Codes.

2-5-6-7-8-TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and speciaV.F. and F.M. Equipment; Telephone Carriers and Repeaters; phone Carriers and Repeaters; Equipment; Line Transformers and Equipment; Line Transformers and
Noise Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts.
Tel.: Tring 3476 (3 lines) Cables; RAHNO TRING STD: 044282 TELEX 82362
WW- 066 FOR FURTHER DETAILS

Ballistics
Computers by Westinghouse. Nine servo amplifiers with associated motors and Power Packs. Brand new in sealed containers. Price on application.

Automatic
Numbering Machine by Western Union. Four Uniselectors and 30 neons. Ideal basis for amateur computer. Application leaflet. £12.10s. post free.
punches, readers, verifiers and teleprinters. new computer engineering sUrplus materials, at realistic prices. mobile showroom. calls on request to suitable locations.
Elliott 8038 computers 4 K store, 803 C 8K store, film handers, iwo tape readers, iwo tape punches. ICL 1901 Central Procesters 8 K sfore Uneprinfer, $600^{\circ} \mathrm{LPM}$. Ellioft 903 8K sfore fape readers \& punch. Prices on application.

COMPUTER TRAINING PRODUCTS

2 Lordship Lane, LETCHWORTH, HERTS. Tel: 4536 0462/6

BUILD A LITTLE MORE PROFESSIONALISM INTO YOUR PRODUCT

\square MARRIOTT TAPE HEADS FOR AUDIO AND DIGITAL APPLICATIONS \square HIGH QUALITY, COMPETITIVE COST \square SINGLE TRACK UP TO 8 TRACKS ON $\frac{1}{4}{ }^{\prime \prime}$ TAPE

\square WE INVITE YOU TO SEND FOR YOUR COPY OF OUR ABRIDGED SPECIFICATIONS \square WOULD YOU LIKE TO BE KEPT INFORMED OF DEVELOPMENTS IN THIS FIELD?

WATERSIDE WORKS
PENRYN, CORNWALL
MARRIOTT MAGNETICS LTD.,
A SUBSIDIARY COMPANY OF
PENRYN - 3363-3591
BUSINESS COMPUTERS LTD.

WW- 069 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Illustrated the Si452 Distortion Measuring Unit - low cost distortion measurement down to .01\% £27.0.0

Si451
£32.0.0
Si453
£37.0.0
Comprehensive Millivoltmeter
350μ Volts
20 ranges
Low di
sine square RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501

BRADFORD ROAD, CLECKHEATON, YORKSHIRE.
WW-071 FOR FURTHER DETAILS
DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Chaning Cross Road, London WC2H OER Tel: $01-9303070$

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

WW-070 FOR FURTHER DETAILS

WW- 073 FOR FURTHER DETAIILS

Now hear this!

Goldring and Toa have a lot of valuable things to tell you on P.A.

Welcome the news that Goldring and Toa can offer you the most advanced range of P.A. systems. Nothing but the best-in high performance products ... P.A. Amplifiers-microphones-horn speakers-megaphones-power intercoms-meeting amplifiers-background music players, etc.

Goldring ©

Sole UK distributors of modern P.A. systems by Toa Electric Co., Led,
Goldring Manufacturing Co. (Great Britain) Ltd. $486 / 488$ High Road, Leytonstone, London E. I I
Write or Telephone OI-5398343 For Full Details

WW-074 FOR FURTHER DETALLS

16 los of high quality performance for only £62

The S51B is the answer for a low cost, easy to use single-beam oscilloscope.

Here are some of the reasons why:

- Small size-light weight $8^{\prime \prime} \times 7^{\prime \prime} \times 15^{\prime \prime} .16 \mathrm{lb}$.
- 5" flat-faced P.D.A. tube.
- Bandwidth DC-3MHz.
- Auto sync and trigger level control
- Proven performance of over 20,000 S51's in use throughout the world.
- Send for full specification now !!!

TELEQUIPMENT,
313 Chase Road, Southgate, London, N. 14 Telephone : 01-882 1166

Telequipment

Wireless World

Electronics, Television, Radio, Audio

Sixtiecth year of publication

Communications receivers being the theme of the first article in this issue, our cover illustration is of part of the chassis of the Racal RA1220 on which is superimposed the "Racalok" digital frequency readout.

IN OUR NEXT ISSUE

Constructional details for a simple stereo preamplifier based on two integrated circuits. Class AB audio amplifier. Having discussed the pros and cons of class A and B amplifiers in this issue (p.278) J. L. Linsley Hood gives details of an amplifier with class A performance but reduced thermal dissipation.
Understanding and using operational amplifiers.

Contents

255 Electronics in Medicine-the Future

Communications Receivers by Pat Hawker
Transistor Tester by D. E. O'N Waddington
H. F. Predictions

Ralph West reviews the Low-Cost Horn Speaker
News of the Month
Announcements

Letters to the Editor

Crystal Oven and Frequency Standard by L. Nelson-fones
Cecilia-Saint or Temple Prostitute?
Books Received
Which Type of Microcircuit?
Electronic Building Bricks by fames Franklin
Class Distinction in Audio Amplifiers by f. L. Linsley Hood
Root Hog or Die by Thomas Roddam
Conferences \& Exhibitions
Active Filters-11 by F. E. f. Girling Ev E. F. Good
Modern Direct Voltage Calibration System by H. Stern
New Books
Circuit Ideas
Electric Field Probe by f. Thickpenny
Metal Glaze Resistors by K. L. Dove
World of Amateur Radio
Personalities
New Products
Literature Received
Communications Receivers-Tabulated Specifications
sItUATIONS vacant
INDEX TO ADVERTISERS
I.P.C Electrical-Electronic Press Ltd Managing Director: Kenneth Tett Editorial I)irector: George H. Mansell Advertisenient Director: George Fowkes Dorser House, Stamford Street, London, SE1
O I.P.C. Business Press Ltd, 1970
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Overseas; 1 year $\{3$ 0s 0d. (Canada and U.S.A.; s7.2). 3 years $\not \subset 13 \mathrm{~s} 0 \mathrm{~d}$ (Canada and U.S.A.; $\$ 18.50$). Second-Class PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Iliffepres $251: 37$ London. Cables. "Ethaworld, London, S.E.1." Annual Subscriptions: Home: [3 0s Od. mail privileges authorised at New York N.Y. Subscribers are requested to notuy a change or address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lymton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd Street, New York 10017. Telephone: (212) 689-3250.

How radio manufacturers benefit from ceramic resonators

While semiconductor technology has made good progress, the intermediate frequency (IF) sections of domestic and professional radiosets have changed little since transistors were first used in this field. Most receivers are still using IF 'chains' built up from coils and transistor amplifier stages but with the introduction of Mullard ceramic resonators, the 'micro' revolution has hit the IF section too.

Improved performance. Ceramic resonators are the result of a six-year research and development programme, and two million of them are now in use. They hardly change their characteristics at all over a wide temperature range. This means listeners do not have to re-adjust their sets half a minute or
so after switching on. Due to the improved shape of the IF response curve, the selectivity is considerably improved. This means that interference from adjacent stations is significantly reduced. Unlike conventional IF coils, the new device is unaffected by magnetic fields.
So no shielding is needed.
Smaller size. These new devices result in a big reduction in the size of IF sections of both a.m. and f.m. radios. They are complementary in size to modern IC circuits-single resonators measure only about $11 \times 8 \times 3.5 \mathrm{~mm}$.

Long-term stability. A device working at 470 kHz has a typical 'Quality' value several times better than conventional IF circuits. The working frequency is maintained for more than 10 years to $\pm 1 \mathrm{kHz}$.

Assembly time saving. The number of connections that set-makers have to cope with is drastically reduced. When using an integrated circuit and a resonator filter module, like the Mullard LP1175, the benefits are even greater, with a reduction of over 30% in the required connections. And there's no alignment on installation or at any other time.

More robust. The discs that are the heart of ceramic resonators are hard, chemically inert, and immune to humidity and other atmospheric conditions. The electrical connections are gold-to-gold to ensure good performance even under adverse conditions.

Worth it. The Industry thinks so. We have built our reputation by consistently raising quality and lowering costs. Our unique experience in component manufacture allows us to bring many resources to bear on individual problems. We can also be sure that our products give continuous and consistent service, because our detailed knowledge of their use helps us relate the highest quality with the best possible price. This is something which applies across the very wide Mullard component range.

Mullard

components for consumer electronics

Mullard Limited,
Consumer Electronics Division,
Mullard House, Torrington Place, London, WCI

Editor-in-chief:

W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL

Assistant Editors:

B. S. CRANK
J. H. WEADEN

Editorial Assistant:

J. GREENBANK, B.A.

Drawing Office:
 H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
R. PARSONS (Classified Advertisement Manager)

Telephone: 01-928 3333 Ext. 533 \& 246.

Electronics in medicine-the future

The recently published report by the Electronics 'Little Neddy' giving an economic assessment of the U.K. electronics industry, to which we referred in last month's leader, includes a section headed "A strategy for the 1970s". In this the E.D.C. suggests potential growth areas; it has not however, attempted to give an analysis of the areas of concentration as this would involve a "full scale technological forecasting exercise and a detailed assessment of the international competitiveness of the entire industry". None the less, it is interesting to see that one of the growth areas is medical electronics.

The report cites evidence given to the Zuckermann Committee on Hospital Scientific and Technical Services in support of its forecast that the main growth is likely to be in the spread of automation in the fields of biochemistry, hematology and microbiology; the development of engineering technology and instrumentation in medical physics; and the application of computer techniques to medical practice.

The E.D.C. states, however, that there are a number of serious weak nesses which are hampering "the development of a viable U.K. capability in this growing market".

The first is a weakness in maker-user relations. It is pointed out that technologists are not spread thickly or widely enough through the Health Service to facilitate the widespread application of advanced techniques. This sometimes results in a failure to exploit effectively the results of specialized research teams, and research alone cannot constitute an adequate demand on which to build up a U.K. industry. The recommendation of the Zuckermann report to create a Hospitals Scientific Service and to give scientists and technologists a greater say in the running of the Health Service should help to improve maker-user relations. Although the E.D.C. understands that the report is still under discussion within government, it urges the rapid implementation of the main proposals.

The second is the problem of finance. Limits on the money available for hospitals are said to be a powerful encouragement to the use of equipment which reduces costs. Finally, the E.D.C. says, there is a serious weakness in the industrial structure of this part of the industry and rationalization is urgently required. Some firms in this field are the traditional suppliers of medical equipment with little or no capability in the newer technologies involved. Others are large concerns primarily engaged in other areas of electronic engineering for whom this market is a residual one in which they have little specialist expertise. The object of rationalization should be the grouping of specialist firms producing broad ranges of related products and systems.

Dr. Vladimir Zworykin, who has devoted much of his later life to furthering the applications of electronics in the field of medicine, has spoken of the gap which exists in the application of engineering knowledge to medical problems. This gap is primarily in the development of new devices for large-scale use in clinical practice and Dr Z worykin has suggested that it may be attributable to the long period of testing and evaluation which, in medicine, must intervene between the construction of an engineering model and the large-scale distribution of the final device. He pointed out in an article in Wireless World in 1965 that the resulting expense and delay in marketing, which finds no counterpart in other branches of industry, discourages private enterprise from ventures in the development of medical instrumentation. He suggested the setting up of specialized institutions "to close the gap between theoretical understanding and practical utilization in the application of engineering knowledge to medicine".

With the very limited budgets at the disposal of most hospitals and medical research establishments they are unable to finance major new electronic projects. It is, therefore, understandable that manufacturers find it difficult, if not impracticable, to maintain an expensive R \& D department with little or no prospect of seeing any return. One must not, however, think solely in terms of electronic equipment designed and developed specifically for biological purposes. There are many electronic devices used in other fields which are applicable to medicine. It would appear, however, from correspondence we have had with one medical research establishment that the attitude of major manufacturers to orders for closed-circuit TV and associated sound equipment was anything but encouraging. Perhaps the $£ 50,000$ budget was considered small fry by comparison with the vast sums being spent in the entertainment field.

In the early days of wireless it was seen as the saviour of the man of the sea; when will the potential of electronics in medicine be fully exploited?

Communications Receivers

An examination of the extent to which circuit design and cost are being influenced by increasingly stringent performance requirements

by Pat Hawker*, G3VA

Many of the basic features of m.f./h.f. communications receivers originated 35 to 40 years ago, initially in large part to meet the requirements of amateur radio operators. In the early 'thirties, single-conversion superhets were developed, with adequate signal-frequency amplification to overcome the high ncise of the early multi-electrode frequencychanger valves. The application by Lamb of the Robinson "stenode" crystal filter to provide "single-signal" reception of c.w. signals, coupled with electrical and mechanical band-spreading, resulted in a new class of radio receiver designed for communications purposes. Costs were not excessively above those of good domestic receivers. By the mid-thirties, the National HRO, the Hammarlund Comet-pro and Super-pro, several Hallicrafters' models, some early professional-user models by RCA had all appeared, and were soon followed in the U.K. by receivers for similar applications by Peto-Scott and Eddystone.

With the outbreak of war in 1939, receivers of this category were soon found useful for many communications applications: the HRO was even paid the compliment of being closely copied by both the Germans and the Japanese. Since then, increasing emphasis on the professional users has resulted in a succession of designs of increasing complexity, and the blurring of the former distinction between 'communications' and the more complex 'commercial' receivers used on point-to-point circuits.

While, in some respects, the equirements of the h.f. amateur remain every bit as rigorous as those of other communications services, the professional user has demanded ever-higher standards of stability, dynamic range, adjacent channel selectivity, accuracy of tuning and frequency read-out. resulting in receivers at prices well beyond the reach of most amateurs. There has thus been a marked tendency for communications receiver designs to split into several categories: simple and relatively cheap general purpose receivers primarily intended for the keen "short-wave-listener"; more advanced amateur-bands-only receivers in which high-performance at medium cost

[^3]can be achieved by limiting the total frequency coverage; and higher-cost general-purpose I.f. /m.f./h.f. receivers for professional users at prices ranging up to well over $£ 1000$. A further professional category is the v.h.f./u.h.f. receiver for monitoring and surveillance, with Eddystone as the main U.K. firm in this field.

The merging of 'communications' and 'commercial' receivers is still continuing with modern techniques making it possible to build receivers of the highest attainable performance in quite compact units. For example, the recently announced Marconi 2900 -series, intended for the most demanding commercial circuits, is packaged virtually in the style and size of a general purpose communications receiver. It can be tuned in steps as small as 0.1 Hz .
It might be thought that, after some 35 years of continuous development, the design of each of these classes of receiver would by now have reached the ultimate either in performance or in costeffectiveness, and that few significant improvements can be expected. In reality, this is far from the case. Each advance in receiver design has been accompanied (or

Fig. I Monolithic h.f. crystal bandpass filter.

Fig. 2. Multi-conversion superhet having crystal-controlled first oscillator.
preceded) by increasingly stringent user demands in terms of stability, ease of tuning, dynamic range, and absence of spurious responses and reliability under arduous conditions.

Not all design changes have been uniformly beneficial. Although the development of h.f. semiconductors (and more recently integrated circuits) has opened the way to compact receivers of extremely high stability and impressive "mean time between failures", these devices tave posed serious "front-end" problems. These include limitations to dynamic range due to increased susceptibility to cross-modulation and inter-modulation, and damage from static charges and local transmitters. Other drawbacks are increased loading of tuned circuits, lower stage isolation and greater spread of characteristics. The availability, during the past few years, of single- and dual-gate field effect transistors, with near square-law transfer characteristics, and the increasing impact of hot-carrier (Schottky) diodes in wideband, doublebalanced mixers are reducing these problems.

In some respects, the concentration on all-semiconductor designs came at an unfortunate time, when, for example, the availability of beam-deflection valves ($7360,6 \mathrm{JH} 8$ etc) for use as low-noise mixers made possiblé the elimination of signal-frequency amplification and offered a useful improvement in dynamic range; factors which have been exploited in only a very few designs. An exception was the Squires-Sanders SSR1 receiver for the amateur market.
Even today, in the lowest price ranges, it is usually possible to achieve a higher standard of front-end Ferformance with valves than with semiconductor devices. The continuing demand for low-cost valve or "hybrid" designs of sufficient stability and low-enough tuning rate for s.s.b. reception has increasingly been met by Japanese firms. British, European and American firms tend to concentrate more on the professional user.

A marketing problem in all these fields is that. to ackieve financial viability, the receiver design needs to remain basically unchanged for a time-span approaching a decade (often spawning many variations on the basic chassis). More complex
receivers may take several years to reach production. This means that, at the initial planning stage, the needs of users for at least a decade ahead must be taken into account. No easy matter when device, filter and component developments continue to follow in rapid succession.

In the pasi, impressive operational lifetimes have been achieved: models dating from the early 'forties (RCA AR88 National HRO etc) continue in use in vast numbers; the G.E.C. BRT400 series, introduced in 1947, were marketed for 20 years. The Racal RA17-series, which pioneered the 1950 Wadley triple-mix, drift-cancelling loop. came out in 1954 and remained in production for more than 10 years. Several current amateur designs (for example the Collins 75 S series) date back 10 years.

Long operational lifetimes often depend as much on the mechanical as on the circuit design. It was no accident that James Millen. designer of the original HRO, had studied mechanical rather than electrical engineering. The need to combine good mechanical with good electrical characteristics, to achieve a receiver which is ergonomically pleasant to operate, is still not always appreciated. One of the more successful basic designs of recent years-the Plessey PR155 series-resulted from extensive investigation into control features required by operators.

Choice of intermediate frequencies

The continuously-tunable superhet receiver, whether single- or multiconversion, must have its first i.f. outside its tuning range. For a typical receiver covering say 2 to 30 MHz , this limits choice to below 2 or above 30 MHz . On the other hand, models with a non-continuous tuning range (such as amateur-bands-only designs) have a far more flexible choice, and often adopt frequencies between 3 and 9 MHz . To reduce image response, without increasing pre-mixer selectivity, the professional designs are increasingly using a first i.f. above 30 MHz , resulting in up-conversion in the first mixer.

This trend has been encouraged by the development of h.f. and v.h.f. crystal filters having good selectivity characteristics and suitable for use as 'roofing filters' (filters included early in a receiver to reject out-of-band signals but with final selectivity characteristics usually determined by a subsequent filter). Several current designs use initial crystal filters above 30 MHz -as high as 40.5 and 73 MHz in some Rohde \& Schwarz models.

Recent filter developments have included multi-section ceramic filters having good "shape factor" (ratio of bandwidths at -60 dB to that at -6 dB) and the introduction of monolithic crystal, filters. The monolithic crystal filter (MXF) promises to reduce size and cost of high-frequency s.s.b. filters by a significart factor. It consists of a quartz wafer on which pairs of metal electrodes are deposited on opposite sides of the plate.

Fig. 3. Synthesis of 1 MHz signals in Plessey PR 155 series.

Fig. 4. Wadley drift-cancelling loop technique as used in many Racal receivers.

The quartz acts as a piezo-electric transducer, converting input signals into mechanical vibrations, and vice versa. The quartz also provides the coupling medium between the pairs. The metal electrodes lower the resonant frequency of the transverse shear-wave in the plated regions only, so that this resonance does not extend into the areas without electrodes, but remains "trapped" under the thin metal film electrodes. Filters having 12 coupled resonators may have a shape factor of about 1.5 to 1 in the upper h.f. region, and the technique can be applied to filters up to u.h.f.

Stability

The resolution of s.s.b. speech requires that a receiver should te capable of being set, and remain, within about 30 Hz of the nominal frequency: about one part in 10^{6} at 30 MHz . For commercial applications both long- and short-term stability are important; for amateur use good short-term stability is the main requirement.

It has been the need for stability of this order which has brought about many of the receiver developments of the past decade or so. It led initially to much greater use of the form of multi-conversion superhet having switched crystalcontrolled first oscillator and tunable first i.f., a form of receiver popularized by Collins and Drake and now widely used. The tuning rate remains the same on all frequencies, with a degree of electrical bandspreading determined by the tuning range of the i.f. which may be 1 MHz . 200 kHz or even 100 kHz . The reduction of the tuning range requires progressively the use of more crystals, until-at least for general coverage models-it becomes

Fig. 5. Phase-locked synthesizer using digital techniques.
more economical (and offering potentially higher stability) to replace the individual crystals with some form of frequency synthesizer to provide the spaced first-oscillator frequencies.

With this type of arrangement, the second local oscillator providing the tuning sparr, remains a simple $L C$ oscillator. Such a system is ofter called "partial synthesis". One of the first all-semiconductor general-purpose receivers of this type, using a phased-locked synthesizer, was the National HRO-500 although this was soon followed by many alternative designs using synthesis based on phase-locked oscillators (often including a variable digital divider) or variations of the Wadley drift-cancelling loop as in the Racal RA217 and subsequent all-semiconductor designs.

A rather different simple partialsynthesis technique, providing a stable variable-frequency oscillator for the first
(and sometimes only) frequency changer has been used in several amateur-bands-only receivers, including the Hallicrafters SX 146 and Drake R4 series. This synthesizes the injection frequency from a relatively low-frequency tunable oscillator combined with a series of crystal-oscillator frequencies chosen for the band in use, forming what is often termed a heterodyne-type v.f.o. with equal tuning rate on all wavebands.

The stability of a partial-synthesis receiver is usually adequate for conventional s.s.b. reception. However, increasing use is being made of narrow-band frequency shift keying, phase-coded data transmissions and signal-processing techniques such as Lincompex and Piccolo. Several of these systems demand a frequency stability in the receiver of from 1 to 3 Hz , or at 30 MHz , a few parts in 10^{8}. Long-term stability of this order cannot normally be achieved with partial synthesis although techniques for stabilizing a v.f.o. to within one part in 10^{7} have been developed (e.g. Racalok). A Racalok unit forms a built-in facility in the latest Racal RA1220 receiver and frequency locking to within $\pm 2 \mathrm{~Hz}$ is also provided in the Plessey PR1551 and PR1553.

The more conventional method of achieving stability beyond that available with partial-synthesis is by means of full synthesis, in which all high-frequency oscillator frequencies are derived from a single temperature-compensated crystal standard. Until recently, such synthesizers have usually been built as separate units to the receiver proper, but G.E.C. achieved the distinction of developing the first general purpose h.f. receiver (type RC410) to use full frequency synthesis in such a manner that the tuning has much the same 'feel' as a normal continuously tuned receiver. The synthesizer, of the variable ratio divider type, is controlled by mechanical gearing of the synthesizer 'switches' in conjunction with servo-motor control of the signal-frequency tuned circuits. A similar facility is provided in the Collins 651-S, which can also be remote-tuned by computer techniques.

Tuning in steps of only 1 Hz , and with a stability of 0.5 Hz , has been achieved in the Marconi H 2900 series. in which a

Fig. 6. Pre-mixer arrangements of the Hallicrafiers SXI 46.

Fig. 7. Even without an r.f. amplifier, diode-ring mixers using Schottky (hot-carrier) diodes can give low-noise performance with wide dynamic range.

Fig. 8. Rohde \& Schwarz variable-bandwidth i.f. filter shown set for $\pm 2 \mathrm{kHz}$ bandwidth.
highly stable $L C$ oscillator is controlled by means of assembly and subtraction of pulses.

A possible limitation on adjacent channel operation of any receiver is oscillator 'noise' or 'jitter', although, in practice, this characteristic becomes important only after a large dynamic range and high order of frequency stability have been achieved. In general terms, the noise sidebands associated with low-power oscillators appear to be about 6 dB higher for bipolar transistors than for valves, which in turn appear to be about 6 dB more noisy than field-effect transistors. For these and other reasons increasing use is likely to be made in future of f.e.t. devices for oscillators as well as in the signal path. The phase-locked oscillator has an inherent jitter which can impose limitations, and digital synthesizers also involve high-frequency pulses which must be carefully screened from the signal path. Noise, jitter and spurious response levels of synthesized oscillators are likely to be of increasing importance in the coming decade.

Frequency read-out

Accurate setting and read-out of frequency has always been a problem on h.f. Traditionally, the slow-motion dial, using mechanisms of varying degrees of ingenuity, often in association with a considerable degree of electrical bandspreading, has been the solution. The practical problems have included limitations of scale length of the dial and the backlash and discontinuities associated with reduction gearing. The film strip, or-as in the recent Eddystone 958-a finely printed film disc optically projected and magnified, can provide a film scale the equivalent of several feet in length. Veeder Root and other counter-type read-out mechanisms have been used, for example by Racal and Collins. A significant advance, however, has come with the widespread introduction of built-in or
add-on digital frequency counters providing direct read-out of frequency on numerical display (Nixie-type) tubes, even though this approach adds appreciably to the cost of a receiver.

Dynamic range

The extremely wide range of signals-from fractions of a microvolt up to volts from a local transmitterdemands good cross-modulation and inter-modulation characteristics particularly where broadband input filters are used. This calls for an extremely high degree of linearity in all signal-path stages up to the final selectivity shaping filter (for extreme narrow-band reception using a.f. filters this implies the need for a detector with extremely good linearity). Unless the selective filter can be placed early in the receiver (usually possible only with single-conversion designs), this means careful distribution of gain, keeping signal levels low at least as far as the roofing filter. The limiting factor is often the signal handling capabilities of the first mixer, although where extremely strong signals are present, the linearity of the signal-frequency stages, if any, become important.

The limited performance of the bipolar transistor as mixer and amplifier has led to a determined search for alternative techniques (for valve receivers the beam deflection valve and balanced triode mixers have good dynamic performance). Bipolar mixer performance is improved by using a high level of local oscillator injection, so that the device operates in the switching mode.
One means of dispensing with signal-frequency amplification and achieving a mixer dynamic range of over 130 dB is the use of parametric diode up-conversion: this technique has been used in American designs by National, Avco, RCA, etc. The parametric up-converter can be likened to a cross between a balanced modulator and a
coupled pair of circuits. This approach is limited to up-conversion; and to achieve maximum linearity requires substantial pump power. The parametric up-converter can pass up to a few volts of input signal. A possible future alternative for both upand down-conversion, with low-power oscillator injection, is the square-law resistor (space-charge-limited diode) which follows an accurate square law characteristic.

At present, a more practical approach consists of using a special f.e.t. amplifier in conjunction with a wideband doublebalanced diode ring mixer using hot-carrier diodes. Amplifiers of this type, capable of handling linearily signals up to over a volt, have been introduced by Comdel. Several current receivers use field-effect r.f. amplifiers employing the cascode arrangement, either with dual-gate m.o.s.f.e.t devices or with two separate f.e.t devices, since the junction f.e.t. appears to be less susceptible to static puncture than the dual-gate m.o.s.f.e.t.

Where bipolar transistors are used in r.f. amplifiers a useful extension of dynamic range can often be achieved by the use of r.f. overiay power transistors, an approach found in some recent Redifon receivers, which also make use of voltage-controlled diode attenuators in the input circuits. Manual attenuators are fitted in many semiconductor designs.

Front-ends

The protection of front-end devices remains a difficult problem, since the widely adopted solution of incorporating back-to-back diodes across the tuned circuit can introduce cross-modulation on strong local signals. Silicon diodes are much better in this respect than germanium diodes, but a more satisfactory solution may be the use of neon tubes in the receiver, or gas-filled surge arrestors in the feeder lines.

Electronic tuning diodes represent another possible source of non-linearity, and this is one reason why mechanical tuning remains popular, except for receivers for frequency-hopping and similar military techniques.

Little need be said about the basic noise performance of receiver front-ends. In

Sub-unit constructional techniques used in Plessey PR155 series.

practice, for many years, there has been no difficulty in achieving the lowest usable noise factor. since over most of the 1.f./m.f./h.f. spectrum galactic and site noise makes it pointless to strive for a noise factor of less than about 10 dB (where emphasis is on performance between 20 and 30 MHz this can be usefully reduced to about 8 dB).

Since any improvement in the noise performance of an amplifier usually involves a reduction of dynamic range, most receivers have a noise figure of about 10 dB . For the reception of extremely weak signals, it is better to limit the noise bandwidth to the minimum appropriate to the information rate. Correlation detection and integrating techniques can result in recovery of information from below the noise level.

A valid reason for including r.f. amplification in front of a low-noise mixer is to facilitate the provision of pre-mixer selectivity. Several designs now use double-tuned input circuits with a cascode f.e.t. amplifier.

Spurious responses

The susceptibility of the superhet to various spurious responses, of which

Fig. 9. Balanced mixer using 7360 beam deflection valve can provide low-noise and extremely wide dynamic range.
image response is the best known, to direct i.f. breakthrough and to internally generated 'birdies' calls for careful choice of intermediate and oscillator frequencies, effective pre-mixer selectivity and generous use of screening within the receiver. Recent years have seen increasing use of wideband and sub-octave filters in the input circuits; this approach imposes even more stringent linearity requirements. Screening, however, has been facilitated by the wider adoption of modular sub-unit construction with low-impedance coaxial interconnections.

While image, direct i.f. breakthrough and other forms of spurious response should ideally be better than 120 dB down on the desired signal, most users would be happy with 80 to 100 dB of protection. In practice, even for high-performance receivers, image may be only 50 or 60 dB down at 30 MHz , and on the lower cost models may be restricted to about 35 to 50 dB .

Especially severe conditions exist on board naval vessels where several transmitters may be operating in close proximity to the receiver. It is warth recalling that a G.E.C. h.f. receiver developed for the Navy in the early 'sixties achieved an image and spurious response better than 130 dB down by using six signal-frequency tuned circuits with single conversion (i.f. 1600 kHz). This had two low-gain cascode valve amplifiers and a double-triode balanced mixer. It seems doubtful whether this performance has yet been bettered with conventional forms of all-semiconductor front-end, despite the benefit of up-conversion to v.h.f.: special selectivity units are offered by some firms for use near powerful transmitters.

Variable i.f. filters

The final selectivity characteristics of most modern receivers are determined by one or more crystal or mechanical i.f. filters (although some lower-cost models still depend on a final i.f. of about 50 kHz). High-grade s.s.b. filters have a shape

Fig. 10. Claimed selectivity curves for one of the Rohde \& Schwarz filters.

Fig. 11. Philco combined.a.m. /s.s.b. demodulator.
factor approaching unity with low passband ripple; even with such filters it is important that there is no signal leakage around the filter, or any sudden fall-off below the 60 dB . level. Typically, however, an overall s.s.b. shape factor below about 4 must be considered good.

There are still attractions in a continuously variable bandwidth filter, and several techniques to achieve this have been developed, mostly involving some form of pass-band i.f. tuning to stagger the relative position of successive bandpass filters, for example in the Redifon R408 marine receiver.

An arrangement capable of providing almost ideal selectivity characteristics is used in several Rohde \& Schwarz receivers, based on a dual-mix system in conjunction with high-grade 30 kHz low-pass filters. The incoming i.f. signals can be shifted away from or towards the sharp cut-off edges of the two filters, using sideband inversion to permit the slicing action to occur on the upper and lower sideband: see Fig. 8. At $\pm 6 \mathrm{kHz}$ a shape factor of 1.07 is claimed.

Demodulation and a.g.c.

Almost all recent designs have incorporated heterodyne (product) detectors for s.s.b. and c.w. reception, although envelope detection must usually also be provided for a.m. Fig. 11 shows a combined s.s.b./a.m. detector developed by Philco for valve receivers. High-performance product detectors have also used 7360 beam-deflection valves and hot-carrier diodes.

Fig. 12. Block diagram (a) of phase-lock loop synchronous demodulator; (b) bi-aural demodulator. Matrix switch positions; a.m. /d.s.b. right A.F.I., left A.F.I.; u.s.b. both $A+B$; both sidebands right $A+B$, left $A-B$; l.s.b. both $A-B$. f.m. both Q.

Fig. 13. Basic outline of simple homodyne (direct conversion) receiver for s.s.b. /c.w. reception.

Considerably greater flexibility and improved performance on some modes is possible, though at an increase in complexity, by the use of lock-loop synchronous demodulation (or preferably by bi-aural demodulation comprising a lock-loop demodulator with independent presentation and selection of the two sidebands). Such demodulation can be highly effective not only on s.s.b., c.w. and a.m. but also on narrow-band f.m. and double-sideband-suppressed-carrier modes. Synchronous demodulation is incorporated in the recent Marconi H2900 series.

The coming of integrated circuits has almost certainly opened the way to much greater use of synchronous detection, since almost all components for a phase-lock loop can be provided on a single chip.

Synchronous demodulation also makes possible an extension of interest in homodyne (direct-conversion) and synchrodyne type of receivers as an alternative to the superhet. Already simple forms of direct conversion receivers (including some which phase-cut the audio image) have been developed for s.s.b. and c.w. reception by amateurs, providing reasonably good performance at relatively low-cost. Many have used hot-carrier diode ring mixers to heterodyne the incoming signal directly to audio frequency.

Another receiver function which lends itself to the use of integrated circuits is audio-derived a.g.c. with 'pedestal' or 'hang' characteristics. Hang a.g.c. systems
using discrete components have been widely used, but the development of integrated-circuit generators, such as the Plessey SL621, makes possible sophisticated systems with a minimum of contructional problems. Timing characteristics are governed by the values of the few external components.

Microelectronics

Digital integrated circuits are widely used in frequency synthesizers and in frequency locking and digital readout counters. The development of linear integrated circuits, monolithic and thin-film, has resulted in high-performance 'pocket' communications receivers (prototype models of this type have been described by MEL Equipment and by Avco).
Recent price reductions in linear integrated circuits, however, now make this form of construction increasingly attractive for almost all classes of receiver. There are still a few functions where the advantages remain with discrete devices, so that a hybrid discrete/integrated approach can be anticipated. One practical problem has been the rapid development in this field, often making it necessary to reconsider ideas during the development of new models. A major advantage, now that linear integrated circuits are becoming standardized, will be the appreciable reduction in design and development time, since many receivers will be variations of discrete components fashioned around a set of linear modules.

For example, the Plessey SL600 series of linear integrated circuits make possible receivers using SL610 r.f. amplifier; SL64I diode-ring frequency changer; block crystal filter; untuned SL612 i.f. amplifier; SL641 product detector; SL621 a.g.c. system and SL630 a.f. amplifier. By utilising such combinations a great deal of the detail design work is eliminated. Indeed, this factor could well encourage, in the coming decade, more home-construction of high-performance receivers, meeting individual requirements with a minimum of design problems.

Transistor Tester

A simple instrument which measures beta and leakage, and indicates how faulty transistors have failed

by D. E. O'N. Waddington*, M.I.E.R.E.

The way in which a transistor failed is often important in the diagnosis of circuit faults. The simple tester described in this article indicates which junction has failed and in what fashion. Good transistors can be tested for leakage, and beta from 20 to 1000 can be measured. Additionally rectifiers and low-voltage zener diodes can be checked.
The range of transistor testers currently available is quite large and, as expected, they are all designed specifically to test for good transistors. Some of the more sophisticated testers, notably the curve tracer variety, are also capable of diagnosing what is wrong with a faulty transistor. This kind of information can be quite valuable and the tester to be described was designed with this in mind. However, it does test good transistors as well!

Beta test circuit

The tester is based on the emitter follower circuit of Fig. 1. The measurement of beta is made by adjusting the value of the base resistor $R V_{1}$ so that the meter reads 25% of full-scale deflection (f.s.d.). Under these conditions the circuit can be approximated by the equivalent circuit shown in Fig. 2 which can be analysed as follows:
$V_{E}=V_{B} / 3$ (Condition set by adjusting $R V_{1}$)
$V_{E}=V_{B} \frac{(\beta+1) R_{2}}{R_{1}+R V_{1}+R_{2}(\beta+1)}$
$3 R_{2}(\beta+1)=R_{1}+R V_{1}+(\beta+1) R_{2}$
$3 R_{2}(\beta+1)-R_{2}(\beta+1)=R_{1}+R V_{1}$
$\beta+1=\left(R_{1}+R V_{1}\right) / 2 R_{2}$
$\beta=R_{1} / 2 R_{2}+R V_{1} / 2 R_{2}-1$
($R_{1}=2 R_{2}$ or $R_{1} / 2 R_{2}=1$)
$\beta=R V_{1} / 2 R_{2}$.
Thus, if a value of 500Ω is chosen for R_{2} and $1 \mathrm{k} \Omega$ for R_{1} a linear variable resistor of $250 \mathrm{k} \Omega$ can be used to give a linear beta measurement range up to 250 . If a higher beta range is needed, a higher value of variable resistor could be employed for $R V_{1}$. Alternatively, the method of use could be modified ; instead of setting $R V_{1}$ so that the meter reads 25% of f.s.d. it is set so that the meter reads 50% of f.s.d. By an analysis

[^4]similar to the one above it can be shown that under these conditions:
$$
4=\left(V R_{1} / 2 R_{2}\right)+0.75
$$

The effective measuring range is multiplied by a factor of four times. (The 0.75 in the equation is so small that it can be ignored.)

This method of measurement is obviously not precise as it ignores the effects of $V_{E B}$ and r_{E}. In the practical circuit shown in Fig. $3, V_{B}$ is slightly increased to reduce the error caused by $\boldsymbol{V}_{\boldsymbol{E B}}$. The inaccuracy of measurement using this modification is of the order of $\pm 5 \%$ although it could be reduced if the tester were designed to test only silicon transistors or only germanium transistors. Another source of error is $I_{C B O}$ flowing through $R V_{1}$ and causing an apparent change in the value of V_{B}. With silicon transistors this error will be negligible but with germanium devices the error can become quite appreciable.
The measurement conditions have been chosen so that they are suitable for most small-signal transistors. The supply voltage is 9 V . On the normal beta range (meter set to 25% of f.s.d.) the voltage drop across the transistor under test is 6.75 V and the current through it 4.5 mA . With the $\times 4$ range, the voltage falls to 4.5 V and the current rises to 9 mA . This change in operating conditions will probably cause the beta readings on the "normal" and " $\times 4$ " ranges to disagree slightly. However,

Fig. 1. The basic measuring circuit.

Fig. 2. Simplified equivalent circuit.
for most practical purposes, this is not important.

Leakage current

$I_{\text {CEO }}$ is measured in the conventional manner with the base of the transistor disconnected. In order to simplify the construction of the tester, the basic leakage range is the same as that for the beta measurement -18 mA . Germanium transistors will usually show some leakage on this range but only a very bad silicon transistor will give any reading. For lowerleakage measurements, a push-button switch, S_{2}, is used to disconnect the meter shunt giving a full-scale deflection of $50 \mu \mathrm{~A}$.

Constructional details

The circuit of the tester is so simple that very few precautions are necessary. However, one or two details may help. The battery used is an Ever Ready type PP9 which has a comparatively stable output voltage and a good shelf life. In practice the life of the battery in the tester is essentially the same as its shelf life. To ensure this is so, the on/off switch should be of the biased type-it is too easy to leave an ordinary toggle switch on.
High-frequency transistors sometimes oscillate when connected as emitterfollowers. To reduce this possibility, slip a ferrite bead over each lead to the transistor test terminals as close as possible to the terminals. Better still, slip the beads over the transistor leads if oscillation is suspected. It is usually possible to detect whether a transistor is oscillating in the tester as touching the transistor will cause the meter reading to change. The only consolation is that an oscillating transistor must have a beta even if it cannot be measured!
$R V_{1}$ has to be calibrated. The best way to do this is to measure its resistance and divide by $1000\left(2 R_{4}\right.$: Fig. 3). The controls are self explanatory but do not forget to set S_{3} to "Calibrate" and adjust $R V_{2}$ for f.s.d. before starting tests.

Transistor faults

With the "Function Switch" S_{1} set to the "Test" position, a good transistor (i.e. one with a beta of 20 or more) will give a reading
of approximately 75% of f.s.d. The exact reading will depend upon the beta of the transistor and whether it is made of silicon or germanium. (The base-emitter voltage of a silicon transistor is approximately 0.6 V while that for germanium is approximately 0.2 V). Specific fault conditions will be indicated as follows:

Collector-emitter short-circuit: The meter will read full scale.

Collector-base short-circuit: The meter will read f.s.d. less the base-emitter voltage of the transistor.

Collector open circuit: The meter will read fractionally less than 25% of f.s.d. This is because the emitter-base junction of the transistor acts as a forward-biased diode so that current from the junction of R_{1} and R_{2} can flow through R_{3} and R_{4}.

Base-emitter short-circuit: The meter will read 25% of full-scale. To positively distinguish this fault from a collector open circuit reverse the $\mathrm{n}-\mathrm{p}-\mathrm{n} / \mathrm{p}-\mathrm{n}-\mathrm{p}$ switch S_{4}. If the fault is an open-circuit collector the meter reading will fall to near zero, the actual reading depending upon the zener break-down voltage of the base-emitter junction. But if the fault is a base-emitter short-circuit, the meter reading will be substantially unchanged.
Emitter open circuit: The meter will read zero; even if the n-p-n/p-n-p switch is reversed.

Occasionally faulty transistors will cause the meter to give completely unpredictable readings. When this happens it is not at all easy to identify the fault although it is sometimes possible to find out what is
wrong. For example, it is not unknown for p-n-p transistors to be marked with an n-p-n type number! When this occurs, the tester will give a reading which is proportional to the reverse emitter-base breakdown voltage of the transistor.
Base open circuit: The meter will read zero (leakage current $I_{\text {CEO }}$). This fault can sometimes be identified by reversing the $n-p-n /$ p-n-p switch S_{4}. The meter will give a reading depending on the zener break-down voltage of the base-emitter junction in series with the forward-biased collectorbase junction.

Zener diode testing

The tester can be used for making rough measurements on zener diodes with voltages of up to 8.9 V . For this purpose the meter is calibrated linearly from 9 to 0 V with the 9 V point at zero deflection and 0 V at f.s.d. (See Fig. 4.) The anode of the diode to be tested is connected to the "collector" terminal and the cathode is connected to the emitter terminal of the tester. With S_{4} set to p-n-p the zener voltage can be read directly from the meter scale. This type of test can also be applied to diodes to check whether they are working and to identify silicon diodes from germanium. The main differences are that silicon diodes generally show a greater forward voltage drop (0.6 V approx.) than do germanium (0.2 V approx.) and that silicon diodes normally have negligible leakage current when reverse biased whereas the leakage of the germanium diodes is usually measurable. This is not true for microwave diodes which should not be tested on this instrument.

Fig. 3. Complete circuit diagram.

Fig. 4. The meter scale required.

H.F. PredictionsJune

The prediction charts show median standard MUF, optimum traffic frequency (FOT is taken as 85% of MUF) and lowest usable frequency for reception in the U.K. Unlike MUF, the LUF is closely dependent on e.r.p., atmospheric noise and type of service. Those shown were drawn by Cable and Wireless Ltd for commercial telegraphy using several kilowatts of power with rhombic type aerials.
Predictions are based on an lonospheric Index (IF2) of 94 and comparison with June 1969 (for which the measured IF2 was 119) shows that FOTs are lower and closer to LUFs. Without the auroral correction Montreal LUF would be about 3 MHz lower.
Ionospheric and magnetic disturbances have been fairly frequent in recent months and can be expected to continue, without serious etlects.

Ralph West reviews the

Low-cost Horn Speaker

Having long been an admirer of Voigt and his teaching, and a keen follower of subsequent work on horn loading and allied techniques, it was with great interest that I read the recent articles by Klipsch, Harwood, and "Toneburst" (February, April and May issues of Wireless World). The big surprise came when I was invited to hear, criticize and write about the new baby*.

The first test was to connect up a tape machine and listen. First impressions with a known input signal give very valuable information, not the whole story, but little subtle clues to peculiarities and shortcomings that may not be sorted out and recognized until after hours and hours of investigation both objective and subjective. This first burst of reproduced sound catches the ear in its most sensitive state as regards artificiality or unreality.

The first impression was good, surprisingly good when one considered the low cost, simplicity and numerous compromises in design. The word that came to mind was 'wholesome' and this impression persisted throughout the session.
To digress for a moment, what do we expect of a loudspeaker? On the assumption that no loudspeaker can be perfect, all loudspeakers then have something wrong. Of all the possible wrong things, some worry our senses, and some do not worry them unduly, sometimes not at all. A little buzz or tizz from the loudspeaker cone would worry everybody. On the cther hand, except when we are out in open country, we are x inches away from some reflecting surface or other. This upsets the frequency response, boosting some frequencies a little, and attenuating others a little, but our senses are not the least bit disturbed. If a loudspeaker does this (they all do!), then our senses should be equally happy. They are, if this is all that is wrong.
The recipe for a good loudspeaker then is a design that incorporates only those wrong things that do not worry our senses. It is on this basis that "Toneburst's" loud speaker was judged.
The bass performance was checked both by listening and by measurement. Apart from the last few notes of the "Low-cost Horn Loudspeaker System", by Toneburst", Wireless World, May 1970.
bottom (organ pedal) octave, nothing was missing. With the sound level meter close up to the speaker, and with a low-distortion audio generator as source, it was possible to take valid readings over the lower end of the spectrum. Down to about 100 Hz , where the horn as such more or less stops working, the level remained within a range of about 6 dB . Including the range down to 40 Hz extended the meter needle excursions to a total range of $10-11 \mathrm{~dB}$. This is very good, as some of these dips and peaks are due more to the room than the speaker itself-as Harwood points out in his April article. Below 40 Hz response fell off rapidly, but nevertheless at one or two points in the room there was useful output down to 35 Hz , or below. In rooms of just the right size-length or diagonal about 18 feet- 30 Hz would probably be O.K., though one must listen at the right place, and this is not in the middle of the room!

I had heard the speaker for a short time before the back of it was closed in to form what Klipsch calls the compression chamber.

Below the cut-off frequency the horn no longer provides a nice meaty acoustic impedance for the cone to push against. The cone therefore moves much farther, in fact more or less as it would on an open baffe. It therefore starts fumping large amounts of almost out-of-phase sound from its rear. As the horn, fed from the front of the cone, is folded into a compact space and moreover opens up to the outside air very close to the rear of the cone, it amounts to a pretty complete acoustic short circuit. Hence the original dramatic fall off below about 100 Hz . (The reported earlier 40 Hz performance is as yet unexplained.) Boxing up the rear of the cone of course stops this cancellation but one has to be careful to use the correct volume. In this range the speaker 'deteriorates' to an infinite baffle type. 'Deteriorates' is in quotes, because though this is a perfectly satisfactory system it has a much lower efficiency. In this range, transient response will be inferior, but fortunately this is of little consequence as most sounds in this range start and stop gradually_any way! In other words, the necessary compromise in the design at the very bottom of the frequency scale, causes negligible degradation. A
little bit of bass lift can be used-say not more than +1 on most pre-amplifiers.

The only detectable slight colouration was in the $150-200 \mathrm{~Hz}$ region. This was not serious, adding a little extra warmth to the sound. Whether it was due to speaker design or the room was not ascertained and not worth doing. Corner mounting of any sound source always throws up a few irregularities. Though I would thus agree with Harwood, in general I would agree with Klipsch. Corner mounting always improves bass in quantity, and in quality too, as the speaker is enjoying better acoustic loading. If there is a honk - the troublesome frequency usually lies somewhere between 140 Hz and 200 Hz - then it can easily be attenuated and effectively lost by a suitably damped tuned circuit in series with the speaker.

At the top end, the performance was equally dramatic. It is amazing how horn loading 'cleans up' a response and makes a reasonable but by no means outstanding drive unit into a first-class performer. The sound was more like that from some of the recent electrostatic arrays on the score of smoothness. This was confirmed again with the sound level meter, close to the horn mouth. Above the frequency where the drive speaker diameter (horn throat strictly) is about a wavelength ($3-4 \mathrm{kHz}$) horn loading is again lost and efficiency falls to something nearer its 'open air' performance. Not enough to upset balance, but making the use of slight top boost worthwhile. This Eagle unit is smooth enough to take this without any need to worry about crossing over to a third super tweeter unit.

Most of the listening was done with 15 -in and $7 \frac{1}{2}$-in master tape recordings plus a few superb copies dubbed by Terry Long. These covered a fairly wide variety of material, all in stereo of course.

One very revealing test (learned from Joseph Enoch) is to sit with one's back towards the speakers. If it sounds and feels like an orchestra, or choir, etc. behind one, there is not much wrong. "Toneburst's" speakers produced a most realistic sensation.

Another very valuable clue comes from the incidental background noises in between items--people turning over pages, moving in their seats etc. The pages were obviously made of paper, not tinfoil!

Applause too shows up resonances and any large frequency irregularities. The audience rarely wears protective gloves, leather or tinplate covered, during a concert and with this speaker they were heard to be properly dressed!

A nother telling observation was the fact that one was never conscious of the loudspeakers themselves. One's whole attention was always drawn to 'between and beyond', where it should be.

This design shows that for a modest outlay ($£ 34$, plus a little hard work, for a stereo pair) it is possible to produce results truly comparable with those obtained from first grade commercial designs, provided the essential requirements are met. There is no doubt that horn loading really does do something nothing else quite manages to do.

News of the Month

obvious that it is a wonder nobody has tried it before; it employs standard semiconductor production machinery and materials that may be found in any basic chemistry laboratory. Cost of the interconnect patterns is less than $£ 10$ per square foot.

The technique may be used in place of wire bonding to connect a monolithic integrated circuit chip to its package connections or it may be used to form sub-systems by interconnecting many chips on a single substrate. Single side or multi-layer interconnection patterns can be formed.

Emley Moor
 aerial contract

The Independent Television Authority has placed orders worth approximately $£ 120,000$ with E.M.I. for the u.h.f. and v.h.f. aerials for the new tower at Emley Moor, Yorkshire. The contracts cover the supply of two u.h.f. aerials (for I.T.A. and B.B.C. services) and a v.h.f. aerial for the I.T.A. service. The u.h.f. aerial panels and the full-wave v.h.f. dipoles will be mounted on a $180-\mathrm{ft}$ triangular supporting lattice. The lattice will be erected on a self-supporting concrete tower 900 ft high, 80 ft in diameter at its base, tapering to 20 ft at the top. E.M.I. collaborated in the design of the lattice aerial support structure with Ove Arup and Partners, consulting engineers who were responsible for the construction of the tower (Wireless World, Aug. 1969, p.358).
The two two-channel u.h.f. aerials on the top 50 ft sections will each radiate 800 kW per programme. The upper is for BBC-1 and BBC-2 colour services, the lower for the I.T.A. colour service, with provision for an additional colour service later. The I.T.A. v.h.f. aerial below these is designed to give a directional pattern specified to match the coverage of the original Emley Moor aerial. It occupies a 40 ft length of the lattice. The remaining

40-ft section is left free for the addition of another system later.

Shrouding cylinders of glass-reinforced plastic will enclose the structure but will allow access in all weathers. A replica of a section of the $180-\mathrm{ft}$ supporting lattice has been erected by E.M.I. at Hayes and performance testing of the aerials has begun. Erection of the system at Emley Moor is due to start in August this year.

Printed through circuits

Logic Designs Ltd, of Ringwood, Hampshire, have invented a new method of interconnecting integrated circuit chips which provides an alternative to the beam-lead process. The company are being very guarded at the moment although they have provided just enough information to whet the appetite. The reason for this is understandable; they are waiting for their patent application to be processed.
In essence an interconnection pattern is printed on a dielectric. The conductors "can be persuaded to come through to the other side of the dielectric at any desired point". One drawing shows the conductors in the centre of a dielectric sheet with connection pads on both sides of the sheet.

Logic Designs say that the process is so

Bending a laser beam using a lightguide formed by depositing a crystal film on a glass sheet at Bell Telephone Laboratories in America. Such techniques may be used in the future to form light circuits to carry out computing and communication functions

British weather experiment in space succeeds

A British meteorological experiment is now circling the earth on the American Nimbus-D weather satellite, sending back continuous temperature information to help improve the accuracy of weather forecasts. Developed and built by GEC-Elliott Space and Weapon Systems (at Frimley, Berks) for scientists at the Universities of Oxford and Reading under a grant from the Science Research Council, it is the first British experiment to be included in an American Nimbus project.

The experiment is designed to measure the temperature at six different levels in the earth's atmosphere, by observation of the infra-red radiation emitted from atmospheric carbon dioxide. The frequency of this radiation changes for different altitudes, and the temperature at various levels of the atmosphere can therefore be derived by radiation measurements over this range of frequencies.
A very sensitive selective chopper radiometer is used, which detects tiny amounts of radiation over six very narrow frequency bands, and amplifies them, using a 'chopper' technique, to provide a measurable signal. The wavelength of the radiation is in the region of 15 microns, and temperatures are measured at altitudes of up to 50 kilometres.

Antigua station closing

The National Aeronautics and Space Administration of America has notified the governments of the U.K. and Antigua of its decision to close its tracking station in Antigua as the station is no longer required for support of the N.A.S.A. manned space flight programme.

Established under an international agreement signed in 1967, the station has been operated by N.A.S.A's Goddard Space Flight Center as a unit of the Manned Space Flight Network. The station includes an S -band radar and a 30 -foot dish aerial.

Since it became operational the station has played a major role in tracking

A corner of a new avionic equipment service department recently opened by $L . C$. Hunting, vice-chairman of the Hunting Group, at London airport. The new department is owned by Fieldtech Ltd and is primarily intended to support the company's marketing activities although it will also be employed to service other equipment
functions for all Apollo flights up to Apollo 11. Following that event N.A.S.A. reduced tracking requirements for the Apollo Programme and the Antigua station reverted to a standby role. The agency has since determined that the station will no longer be required.

At peak operation, the Antigua tracking statio had a complement of 92 persons. Equipment from the site will be employed elsewhere.

Award for p.c.m. inventor

The International Telephone and Telegraph Corporation has awarded Alec Reeves, of Standard Telecommunication Laboratories (a subsidiary of I.T.T.) \$ 5000 and a trophy for his invention of pulse code modulation.

The award-"In recognition of his contribution to the progress of telecommunication technology through the concept and development of pulse code modulation"-is the third given to Mr. Reeves in recent months. In 1969, not only was he made a Commander of the Order of the British Empire but also the Post Office honoured his invention with a special postage stamp and first-day cover.

B.B.C. local radio

Twelve new B.B.C. local radio stations are due to open in 1970. Their locations and operating frequencies (in MHz), are as follows: Birmingham (95.6), Blackburn (96.4), Bristol (95.4), Derby (96.5), Humberside (95.3), London (95.3), Manchester (95.1), Medway (97), Newcastle (95.4), Oxford (95), Solent (96.1) and Teesside (96.6). It is planned to
provide reinforcement for the service on medium waves. The frequencies given are subject to approval by the Minister of Posts and Telecommunications.

Binocular head-up display

Elliott Flight Automation has delivered to the Royal Aircraft Establishment, Farnborough, a binocular head-up display which is at present being tested in a ground-based simulator prior to flight trials in a Comet, scheduled to start later this year.
The binocular head-up display projects two identical groups of symbols from two
parallel cathode-ray tubes onto a wide, shallow reflector placed close to the pilot's eyes. The two groups are aligned so that they appear to the pilot as a single image. Main advantages of the system are that it provides a wider field of view than monocular systems and that it does not take up a great deal of space in the cockpit coaming.

Use of two cathode-ray tubes and lens systems makes possible a dual, fail-operative head-up display which is a necessity where the system is an integral part of, say, an automatic landing system. Should one tube fail, the full symbol pattern remains visible and brightness is hardly reduced. Only the field of view is reduced.

Bright future for electro/optics

By 1980 it is expected that 70% of Mullard's component output will be in optical and microwave devices. As early as 197544% of electronic devices will be totally new, not yet having seen the light of day. These predictions were given last month by B. R. Overton, plant director of N ullard Mitcham, when the technical press were invited to a preview of a number of new developments taking place at the Mitcham works. One of the new optical devices was an image intensifier being developed for military purposes but which is now off the secret list. Simply, it is a passive see-in-the-dark device which requires no more than starlight illumination of the (bject to be viewed. The image is seen by the observer on a small (25 mm) screen. Using a wide diameter objective lens, the image intensifier collects as much reflected light as possible from the object under observation. Collected light is then focussed on to a photoemissive surface which converts the energy into electron emission. Emitted electrons are accelerated by a high voltage and are directed on

Mullard image intensifiers being assembled with a voltage multiplier unit

to a phosphor screen where they produce a larger light output than was received at the photocathode. The light intensity is further increased by adding two succeeding stages of amplification. All three stages are built into a single compact unit.

Colour receiver production

When presenting the annual report of the British Radio Equipment Manufacturers' Association to members, the president (Lord Thorneycroft) commented on the slow rate of production of colour television receivers in the U.K. in comparison with other European countries. For example, Germany, which started a colour service at approximately the same time as we did, is currently producing over a million sets a year-three times our own rate. Incidentally, Japan is said to be producing over six million a year. Lord Thorneycroft went on to remind manufacturers that they must "take advantage of the opportunities that entry into the European Common Market will afford whilst being fully aware of the growth of competition which will exist".

Referring to the home front the president spoke of the question of the timing and organization of exhibitions. It is almost certain that next year there will be a combined trade show in May.

Colour television
 deliveries still up

U.K. colour television deliveries for the first quarter of 1970 show no sign of any slackening in demand, according to the Economic and Statistical Division of the British Radio Equipment Manufacturers' Association. 84,000 colour sets were delivered in the first three months, a record 30,000 of these during March.

Monochrome television deliveries recovered slightly but continued the downward trend recorded in the latter half of $1969 ; 410,000$ sets were delivered in the first three months compared with 416,000 in the same period of 1969.

The decline in deliveries of U.K. manufactured radio receivers, car radios and radiograms is continuing. Deliveries of 153,000 radio sets for the first quarter (161,000 in 1969) were down 5%; car radios showed a fall of $13 \%-75,000$ in 1970 against 86,000 in the first three months of 1969; and radiogram deliveries of $41,000 \mathrm{up}$ to March compared with 44,000 in 1969, a drop of 7%.

Telecommunication films

The International Telecommunication Union (I.T,U.), has a library of about 100 films available for loan. Some of these films were provided by the administrations of member countries and some were provided by telecommunication companies.

Two of the films from the catalogue (which is available) are devoted to the I.T.U. The first (ONU-4) was made in 1965 on the occasion of the union's
centenary and is called "The International Telecommunication Union". It lasts 20 minutes and is available with a commentary in English, French, Spanish, Arabic or German. A copy of the film can be obtained on loan, or bought for $\$ 25$ for non-commercial showings.
The second film (ONU-3), also made in 1965, is called "In Signal Honour" and it commemorates the development of telecommunications over the past 100 years. It lasts for 30 minutes and can be obtained on loan, or bought for $\$ 40$.

Enquiries should be addressed to the United Nations Office of Public Information, Radio and Visual Services Division, Place des Nations. 1211 Geneva 20.

Avionic conference

For the second time meetings of the U.S. Airlines Electronic Engineering Committee are to be held in Europe concurrently with meetings of the European Airlines Electronic Committee. The venue is the Royal Garden Hotel, London, in November. The first European meetings of the A.E.E.C. were held in Brussels in October 1964.

The meetings will be arranged as follows: Airlines Electronic Engineering Committee General Session, November 4th-6th; European Airlines Electronics Meeting, 9 th-11th. Readers interested in attending the meetings should contact D. M. O'Hanlon, Manager Avionics Design and Development Branch, Engineering Head Office, British European Airways, London Airport, Hounslow.

EXPO '70 with I.C.E.

Our sister journal, Instrument and Control Engineering, has arranged a visit to EXPO ' 70 in Japan departing June 13 th and arriving back June 25th which will cost $£ 446$ 10s. per person. This sum covers the cost of bed and breakfast in first class hotels, travel by air, two days at EXPO'70, sightseeing and excursions, the services of an English-speaking guide and a full range of technical visits. Interested readers should write to the editor, Instrumemt and Control Engineering, Dorset House, Stamford Street, London S.E. 1 .

Announcements

A three-day residential conference on industrial microwave and laser applications and instrumentation is being organized by our associate journal Design Electronics, in association with Sheffield University. The conference will be held from 22nd to 24th September at Ranmoor House, Sheffield University. Further details are available from R. A. Ganderton, Design Electronics, Room 121, Dorset House, Stamford Street, London S.E.I.

A vacation school, organized by the I.E.E., on radio frequency electrical measurement practice will be held at The University of Kent, Canterbury, from September 6th to 18th. Further details from the secretary, LS(SE), I.E.E., Savoy Place, London WC2R OBL.

Bell \& Howell has set up an Audio Products Division to market hi-fi equipment. They began by introducing at the recent Sonex 70 exhibition the range of products manufactured by Acoustic Research Inc., of Cambridge. Massachusetts. U.S.A.

John E . Dallas \& Sons are buying electrical equipment from Hitachi, of Japan, for sale in the U.K. Much of the equipment will be marketed under the Elizabethan label.

The Philco-Ford range of solid-state microwave products is now being handled in the U.K. by the Microwave Division of Auriema Ltd.

The Advance Filmcap division of Advance Electronics Lid has signed an agreement with Societe Seco-Novea et Cie , the French electrolytic capacitor manufacturers allowing Advance to manufacture capacitors under licence at their plant in North Wales.
J. H. Associates Ldd, 1 Church Street, Bishop's Stortford, Herts, have been appointed U.K. agents for the range of relays and components manufactured by Alois Zettler GmbH, of Munich, W. Germany.

FieldTech Ltd, has been appointed exclusive U.K. distributor for the range of high-frequency aerials manufactured by Technology for Communications International (TCI), of California, U.S.A.

Techmation Ltd. 58 Edgware Way, Edgware. Middlesex, have been appointed sole distributors in the U.K. and Eire for Fabri-Tek Instruments Inc, of Wisconsin, U.S.A., manufacturers of modular digital signal averaging computers.

Ceta Electronics Lid. 312 Bournemouth Road, Parkstone, Dorset, have been appointed exclusive U.K. agents for TeleSciences Inc., and their subsidiary, Pulse Monitors Inc. American manufacturers of test equipment.

The Plessey Company has announced that the name of its subsidiary, Plessey B T R Lid, has been changed to Plessey Telecommunications Research Ltd.

The Marine Division of Dymar Electronics Ltd, of Watford, has received an order worth over $\$ 260,000$ from the Kelvin Hughes Division, Smiths Industries Inc., Maryland, U.S.A. The order is for the model 822 f.m. v.h.f. marine radio-telephone.

Labgear Lid, has received two contracts, valued at $£ 250,000$, from the Nigerian Government for the supply of 400 single-sideband man-pack radio telephones. The company has also received a $£ 160.000$ contract from the Iraq Government for 250 s.s.b. radiocommunications pack-sets for use by the Iraq mobile police force.

Pye Telecommunications Ltd has received an order from the Government of Jamaica, worth $£ 75.000$, for the supply of radiotelephone equipmenf for use with the Jamaican police force.

Aircraft Supplies Lid. of Bournemouth, have received an order to supply their digital flight data recorder for Air Canada's Boeing 747 jumbo jet fleet and Lockheed 1011 Tristar aircraft.

The Electronics \& Instruments Group of Bell \& Howell Ltd, Basingstoke, have been appointed exclusive U.K. agents for the range of high output piezo-resistive transducer elements and pressure Iransducers manufactured by A.S. Akers Electronics, of Horten, Norway.

Electrotech Instruments, the instrument division of Coutant Electronics, have moved to new premises at 7 Trafford Road, Reading, Berks. (Tel: Reading 582677).

Celdis Ltd has moved from Milford Road to 37-39 Loverock Road, Reading, RG3 IED. (Tel: Reading 58221 1).

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Some improvements in class B

After reading Mr. Johnson's useful article in the April issue, describing his improvements to the basic Lin circuit, his omission of a neat modification surprises me. My interest was aroused after comparing para. 2 col. 1 page 160 with para. 2 col. 2 p. 161 of his article.

In the former he defends the use of diodes D_{1} and D_{2} by stating that the signal to $T r_{5}$ and T_{6} is a current and that voltages are relatively unimportant: whereas the latter contains an analysis of the resistance levels in these stages which shows that the "current source" sees a resistance roughly equal to its own source resistance! I think that I have interpreted Mr. Johnson's figures correctly because he allows for a loss in gain of 0.55 to 0.45 at this point. If this is the case then we have a generator with non-linear internal resistance feeding driver stages with comparable, non-linear, input resistances. This is hardly a desirable situation for "current drive".

In view of this I would like to refer to a letter from Mr. Baxandall,' in which he suggests that the current drive transistor could be profitably replaced by a pair if a higher output resistance were sought
and this modification I respectfully suggest might be useful in Mr. Johnson's circuit This would result in two extra transistors being needed.

P. J. Baxandall's improved Lin circuit.

Mr. Baxandall's letter is also the source of another refinement. The diode-dodge, which is the main topic of his letter, may not bring such a pronounced improvement to K. C. Johnson's circuit (due to the different quiescent driver-currents in the different circuits Mr. Johnson's power transistors cut out at much lower signal levels) but it may be worth trying-particularly since the components are so few.

In conclusion I would like to thank Mr Johnson for his interesting account and apologize for so pedantically analysing the article. Unfortunately, I have been unable to build the circuit (and discover that all my fears are groundless) but Dr. A. R. Bailey ${ }^{2}$ (who noted Early-effect distortion and some allied problems in 1968) does not use an enhanced common-emitter stage and so I can only conclude that the extra expense is not warranted at higher quiescent currents.
M. J. Hamer,

Ullingswick,
Hereford.
"Symmetry in a class B amplifier" P. J. Baxandall.
Letter to the Editor, W.W. Sept. 1969, pp.416-417
" 30 -Watt High Fidelity Amplifier" Dr. A. R.
Bailey, W.W. May 1968, pp. $94-98$

The author replies.
Mr. Hamer's letter raises a very interesting point concerning the fundamental theory of transistor circuits. Are the devices to be thought of as current- or voltagecontrolled? In his letter in last September's issue P. J. Baxandall says that he has felt for many years that the almost universal tendency to regard transistors as basically current-operated devices has exerted a major retarding influence on progress. On this point I agree with him entirely. Indeed I wrote an article in this journal almost twelve years ago' in which just this point was made quite specifically, and 1 have repeated it many times since. Why then am I now advocating a current controlled approach to the design of audio amplifiers?

The answer is that neither way of thinking should be followed regardless in all circumstances. When the base of a transistor is fed from a low-impedance source, that is to say one that is thought of naturally as a voltage, then its action will in general be faster and the various circuit tolerances easier. For switching circuits this is advantageous and voltage-control is the best way to think in their design. If, on the other hand, the base is left at high impedance, so that it is natural to think in terms of current, then more gain will normally be available together with better linearity particularly if modern transistors are being used. It is hardly surprising that most low frequency amplifiers have been designed on this latter basis.

With modern diffused silicon transistors the cut-off frequency is so high that even with current-controlled operation the speed is still perfectly adequate to cover the a.f. range and also leave a margin sufficient

[^5]for rolling-off a large factor of negative feedback. This feedback takes care of much of the tolerancing difficulty, but in any case it is quite customary to select the final transistors for gain and to adjust the crossover current on test with amplifiers of this type. Thus in this audio amplifier circuit the disadvantages of current-controlled working are not serious, whilst the advantages in gain and linearity are considerable, so that there is a strong case for considering the design on this basis. Once this conclusion is accepted then all the essential features of my circuit follow almost automatically.

But the extra diode in the emitter of Tr_{5}, that both Mr. Baxandall and Mr. Hamer advocate, now appears merely as a source of extra unnecessary distortion. It is not needed in my circuit for the protection of the emitter junction of $T r_{\text {s }}$ against surges of reverse voltage, and on the currentcontrolled theory it simply raises the input impedance of the final stages over just that part of the voltage swing where the output impedance of $T R_{2}$ is falling lower than we would like. Thus it seems to me that there is a positive advantage in leaving it out.

As regards the suggestion that extra transistors could usefully be added in such a way as to increase the effective output impedance of $T r_{2}$, this is the very possibility that I envisaged in the last sentence of the section "choice of cross-over current" (p. 161). Such an addition would certainly give an improvement, making the distortion both smaller and more symmetrical, but I decided on balance that the level of distortion is already so low in comparison with other parts of the system that the extra complexity was not justified. I have not tried any such arrangement, therefore, but suspect that there might be difficulties due to extra time-constants being brought into the feedback loop.
K.C. Johnson.

Electronic dice

Prompted by Mr. Crank's invitation to readers in his article "An Electronic Dice" (W.W., April 1970), I have found an improved circuit.

By slight alteration of two of the "classical" dice patterns (Fig. 1, where the new ones are, I feel, equally aesthetically acceptable) the number of outputs required is reduced to three, and the Johnson counter outputs may be used directly. This leads to a saving of one

Fig. 1. (a) Classical dice patterns; (b) amended dice patterns; (c) the three patterns required to form (b).

Fig. 2. Simplified circuit for the electronic dice suggested by S. E. Oliver.

lamp driver and the NOR gate (Fig. 2). Dice score Patterns on/off patterns required

		x	y	z
1	x	1	0	0
2	y	0	1	0
3	$x y$	1	1	0
4	z	0	0	1
5	$x z$	1	0	1
6	$y z$	0	1	1

Rearranging and using the complement of y,

Dice score	x	\bar{y}	z
2	0	0	0
3	1	0	0
1	1	1	0
5	1	1	1
4	0	1	1
6	0	0	1

S. E. Oliver,

Newport,
Mon.

The author replies:

Mr. Oliver has produced a very elegant solution to the problem of designing an electronic dice using logic circuitry. While I set myself the task of producing a circuit which would display the classical dice patterns Mr. Oliver's alternative patterns are very acceptable and many readers will consider that the saving in components justifies the alteration.

In answer to those readers who have complained about my use of "dice" instead of "die" I plead common usage. Brian Crank.

Industry and research in universities

I would like to object to part of your editoral on "Technology versus Education" in the April issue. In this article you stated "At Warwick itself, for example, the School of Engineering Science does research in microwave integrated circuits partly supported by G.E.C.-A.E.I. and Racal (and employees of these firms work in the School)". You must be referring to me when you mentioned support by Racal as I am the only person in the University who receives support from Racal*. I am working as a research student, on a Ph.D. thesis on "The Computer Aided Design of Microwave Circuits" and I have obtained a joint grant from the Science Research Council and Racal for an industrial studentship.

I think I should explain why I wished
to obtain an industrial studentship. I joined the University about six months ago on a Science Research Council grant to study for a Ph.D. degree after working in industry for five years as a student apprentice and two years as a graduate engineer. I found that the move to University resulted in a huge drop in salary. I considered that, as well as obtaining a Ph.D. degree, I should be able to provide some useful knowledge to society through my thesis. Thus in this case I considered I was grossly underpaid. Also my final thesis may be lost in the archives of the University Library, or, if my work was finally published, it may be of no use as someone, possibly in industry, may have done the same work and made full use of it.
Thus I considered the only alternative was to obtain industrial support during my research work for a Ph.D. degree. The industrial studentship I now have gives me a higher salary, but still much less than I would be earning in industry, the security of a long-term job which will continue after I obtain my degree (not at the University) and I should be able to see my research work put to good use.

There are a few points which are essential with industrial support. These are that industry should not interfere too much with the research work, although I am always very pleased to accept advice and help from industry, and the research student should be able to publish any part of his research work. The amount each industry interferes with the work of the research student depends on the industry or on his particular managing director. At one extreme the research student may be left to do whatever research work he wishes and just told that he may take up a job in that industry when he leaves the University if he wishes to. At the other extreme the company may decide precisely what research work the student does at the University and may recall him back to industry to do some different work for them whenever they choose. Fortunately my industrial sponsor is much closer to the first extreme.
B. G. Marchent,

School of Engineering Science,
University of Warwick.

[^6]

The professional one

Here it is, Solartron's outstanding 1240.

The multimeter that's not just a toy but a real step forward in instrument technology.

Now everyone can go digital!
You get Amps, Volts, Ohms a.c. and d.c. - down to 100 micro.
volts and dual slope integration for noise rejection.

Technology apart, the 1240 has automatic polarity indication and a straightforward control layout including a single range selector and fingertip function switches. It's the easy-to-handle go-anywhere
portable multimeter.
Go digital with the new 1240. From Solartron, European leaders in digital instrumentation.

Post the magazine's reply-paid card and we'll send you our data sheet of full details.

The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

Crystal Oven and Frequency Standard

Easily built temperature-controlled oven, containing quartz crystal of $1-\mathrm{MHz}$ reference oscillator

by L. Nelson-Jones, M.I.E.R.E.

The frequency standard described here was designed to provide a $1-\mathrm{MHz}$ reference frequency for a digital counter-timer. It has automatic control of the crystal oven temperature, with a very simple circuit using an i.c. operational amplifier to provide the gain in the control system. The temperature sensor is a sealed thermistor. Full proportional control is provided, despite the simple circuit. The performance of the controller is of a high order for this type of circuit, as can be seen from the table.

In the design, emphasis has been kept on reliability and economy and on ease of manufacture of the crystal oven. This oven can be made using readily available parts, and needs only normal hand tools for assembly.

With a normal $1-\mathrm{MHz}$ parallel resonant crystal an overall frequency stability performance of 0.008 part/million has been obtained, as against 1.1 parts $/ \mathrm{million}$ for the uncontrolled crystal, for each degree centigrade change of ambient temperature.

Temperature control systems

Bi-metallic thermostat. A bi-metallic thermostat with contacts in series with the oven heater is a common method of control. Such a system must always 'hunt' because it is an on-off system. The amplitude of the oven temperature oscillation can to some extent be controlled by careful attention to the structural design of the oven but, despite the simplicity of the system, the design of an oven is often difficult if high performance is needed.
Contact thermometers. Some of the shortcomings of the bi-metallic thermostat can be overcome by the use of a mercury-in-glass contact thermometer. This is a normal thermometer with wires sealed into the wall of the capillary so that a circuit is completed at the desired control temperature by the rising mercury thread.

A more complex system results, since the thermometer cannot be used directly to control the oven heater, first because it operates in the wrong sense (i.e. it closes at the operating temperature and above, and opens below the operating temperature) and secondly because the

Completed $1-\mathrm{MHz}$ frequency standard on a single-side printed circuit board. The crystal oven is enclosed in the white metal case in the middle of the board. Components on the right are the oscillator while those on the left are the power supply regulator.

PERFORMANCE OF COMPLETE SYSTEM

current carrying capacity of the mercury thread is very limited.

The contact thermometer is much more expensive than the simpler bi-metallic thermostat, but has a very much higher long term stability and reliability.
Change-of-state controllers. A control system which gives a much better performance, but still uses a simple on-off control of the heating current, is the Marconi change-of state oven.

The oven uses the melting point of naphthalene as the temperature reference. The expansion that occurs when the naphthalene melts is used with a metallic bellows system to operate a microswitch, which in turn controls the heater current. Little or no hunting occurs with this system since, provided both liquid and solid states are present at one and the same time in the naphthalene, an increase or decrease in heat applied to the system can only change the ratio of liquid to solid content.

The one shortcoming of the system is that it can be made to operate only at one temperature, namely the melting point of naphthalene (approximately $80^{\circ} \mathrm{C}$). Other substances can be used but do not all give the performance achieved by naphthalene.

Despite the excellent performance achieved, it was felt that the difficulties of construction were beyond the average experimenter unless he was unusually well equipped with specialized tools. There are, in addition, patent rights involved.
Resistance thermometers. Resistance thermometers can be used to obtain a very close control of temperature, and allow fully proportional control. Furthermore, it is possible to make the resistors forming the sensor to also act as the heater. This combining of heater and sensor eliminates one major cause of hunting, namely the delay in the heat reaching the sensor due to their separation. Some years ago the author was involved in the design of such a system which, with a double skin
system, achieved a temperature control to within $0.001^{\circ} \mathrm{C}$, over a wide range of external ambient temperature.
Semiconductor temperature sensors. The variations of the parameters of a semiconductor junction may be used to control temperature. Such a technique is used in certain integrated circuits to control the substrate temperature of a matched transistor pair (e.g. the SGS μ A726).

The author has recently described the use of the variation of forward voltage drop in a diode to measure temperature ${ }^{1}$, and this method can easily be extended to the control of temperature. It was felt, however, that the system was too complex for crystal oven control.
Thermistor sensors. Thermistors probably provide the most sensitive temperature sensor system for general use, and therefore can be used in relatively simple systems for the control of crystal ovens. Both negative and positive temperature coefficients are now available, and both may be used for the purpose. The positive coefficient thermistor has a sharp change of resistance, but only over a narrow range of temperature, so a different type of thermistor must be used for each temperature chosen. Most commonly available positive coefficient thermistors have a sharp change in the range 100° to $120^{\circ} \mathrm{C}$, though some manufacturers produce types suitable for use down to about $50^{\circ} \mathrm{C}$.

Because of the high temperatures at which most positive temperature coefficient thermistors operate satisfactorily, it was decided to use the more freely available negative temperature coefficient type of thermistor.

Temperature control circuit

Initially the work on the crystal oven was carried out using the control circuit of Fig. 1. This circuit uses the thermistor in a bridge circuit in order to eliminate the effects of supply voltage variations, at least to a first order. To reduce still further any effect due to supply variations the bridge was supplied from a 4.7 -volt zener diode, which was also used to stabilize the supply to the crystal oscillator circuit. The relatively high current at which the zener diode was run, together with the high slope resistance of a 4.7 -volt type, resulted in the stabilized supply being close to 5 volts.

The thermistor chosen is one with a resistance at $20^{\circ} \mathrm{C}$ of $1 \mathrm{M} \Omega$, which falls to $150 \mathrm{k} \Omega$ at approximately $60^{\circ} \mathrm{C}$ (the temperature chosen for the operation of the oven). The three fixed resistors making up the remainder of the bridge are therefore of $150 \mathrm{k} \Omega$ each. No method of adjustment was included since the exact temperature at which the oven operates is not important, provided it is not too near the highest ambient temperature likely to be encountered in use. In addition too high a temperature would be likely to impair reliability. With the components specified the estimated spread of temperature with different samples of thermistor amounts to perhaps $\pm 5^{\circ} \mathrm{C}$, hence the decision not to use any adjustment in the bridge. Three
samples tried by the author gave controlled temperatures of $57.6^{\circ}, 59^{\circ}$, and $62^{\circ} \mathrm{C}$.

The reason for the choice of a high value thermistor is that with a high ohmic value, the self heating of the thermistor bead with normal supply voltages is reduced to a negligible amount, again reducing the effect of supply voltage variations-a point which is important in the final circuit, where the bridge operates directly from a 12 -volt line.

The operation of the Fig. 1 circuit is as follows. At switch-on the thermistor resistance is at around $1 \mathrm{M} \Omega$ and hence the base of Tr_{2} is at a much lower potential than the base of $T r_{1}$. The whole of the current in this long-tailed pair therefore passes through Tr_{1}, and as most of this current passes through the base-emitter junction of Tr_{3}, transistors Tr_{3} and Tr_{4} are switched full on, and the heater receives the full supply voltage, less only the bottoming voltage of Tr_{4}.

As the heater warms the oven, the thermistor's resistance drops until it equals that of the other resistors in the bridge. At this point the long-tailed pair is balanced with equal inputs to both bases, and close to this point the complementary Darlington pair $\operatorname{Tr}_{5} \mathrm{Tr}_{4}$ ceases to be saturated, reducing the heater voltage. In practice, of course, the heater voltage adjusts itself so that the power input to the heater just equals the heat losses of the oven. The loop gain of this system is not high enough to make the system hunt when used with the oven structure described below, but is high enough to give quite a good performance.

To improve the performance it was decided to increase the loop gain of the circuit. This càn be done by (a) increasing the voltage on the bridge and (b) increasing the voltage gain of the amplifier. The control system that resulted is shown in Fig. 2.

The bridge remains as before but the supply is now the full 12 volts. At first it might be thought that the use of the unregulated supply for the sensing bridge would make the controller very sensitive to supply variations, but this is not so, as the bridge operates very close to its balance point with the much increased loop gain. With the bridge at balance no variation occurs at its output whatever the energisation voltage, provided there is no appreciable self heating of the thermistor.
The mode of operation of the Fig. 2 circuit is very similar to that of Fig. 1. The bridge feeds the differential input of the operational amplifier $I C_{1}$ with a diode D_{1} to prevent excessive inputs when the oven is switched on from cold, and by this means the input level of the operational amplifier is held close to half the supply voltage, the operating condition for which it was designed. Without the diode the operating point of the amplifier might be taken outside the differential range of the amplifier, particularly with respect to reverse bias of one of the input transistors.

The output of the operational amplifier feeds the transistor controlling the heater current, through à $1 \mathrm{k} \Omega$ limiting resistor to protect the operational amplifier output

Fig. I. Initial experimental temperature control circuit for the crystal oven.

Fig. 2. Temperature control circuit actually used. Improved performance is obtained because of the higher loop gain.

Fig. 3. Cross-sectional diagram of construction of the oven.
stage, and through a zener diode to ensure that when the output of the operational amplifier is low the output transistor is cut off although the operational amplifier output may not reach the lower supply rail. The input of the operational amplifier, and the output transistor, both have capacitors connected to severely limit the frequency response of the loop, to prevent high frequency oscillation resulting from stray coupling between output and input, other than through the thermal coupling

Fig. 4. (a) The oven with the heater winding in place over the insulating paper tape. (b) The heater and thermistor in place, with connecting wires attached. (c) Completed oven, opened to show the crystal in position in its socket.
between heater and thermistor. With this severe limitation of frequency response no screening of heater or thermistor leads is necessary, nor is a screen needed between the heater winding and the thermistor bead. The operational amplifier-type 709 CN -needs no further frequency compensation when used in this way. The total voltage loop gain of this controller is approximately 3×10^{4} as against some 3×10^{3} for the Fig. 1 circuit. There is a further gain of just over 2 times due to the higher bridge energisation voltage in Fig. 2.

At the operating point of the thermistor its resistance changes approximately $-6 \mathrm{k} \Omega$ for each degree centigrade, so that with the gains quoted the circuit controls the temperature very closely indeed to the required value, and the performance of the complete crystal oven system depends mainly on the oven construction rather than on the controller. The calculated change of temperature to switch the controller from full-off to full-on is, in fact, only approximately $0.0015^{\circ} \mathrm{C}$.

It must by now have become clear to anyone with experience of this type of oven that, with such tight control, it would be almost impossible to avoid hunting, and indeed the system hunts violently, with the output transistor switching between saturation and cut-off.

The system is, however, completely satisfactory, since owing to the construction of the oven with the thermistor in direct contact with the heater, the frequency of the hunting is approximately 1 Hz and the amplitude of the temperature swing is only about $0.03^{\circ} \mathrm{C}$ peak-peak.

An immediate advantage of this switching mode of operation is a considerable improvement in the overall electrical efficiency, since almost all the power is now dissipated in the oven heater. There is an almost 2 -times increase in efficiency over the circuit of Fig. 1.

In normal use the on-off periods of the circuit vary with the demands of the oven, so that at low ambient temperatures the 'off' period is short and the 'on' long, while at high ambient temperatures the "off' period is long, and the 'on' short. The actual switching frequency does not vary a great deal with ambient temperature.

Fig. 5. Warm-up curves for the oven, obtained with a calibrated thermistor.

During the run-up from cold the switching does not, of course, take place-the heater being full on, until the bridge balance temperature is reached, when switching starts abruptly.

Crystal oven construction

Several models of the oven were built before a simple construction of good performance was arrived at. The following points became evident as the development proceeded:
(a) The thermistor must be in intimate contact with the heater element to ensure that the hunting frequency is high and hence the amplitude of the temperature oscillation is low.
(b) The crystal must be totally enclosed within the oven.
(c) The connections to the crystal or crystal socket must not provide a good thermal path to the outside world.
(d) The thermal mass of the oven must be great enough to ensure that all parts of the oven are at almost equal temperatures. The mass must not be too great or the warm-up will be too slow.
(e) The heater element must be in intimate contact with the walls of the oven to ensure that the thermistor, heater, and oven are all at the same temperature.
(f) To achieve the best performance, with minimum power consumption and fastest warm-up, the oven must be well lagged.

The most important aspects of the design are undoubtedly (a), (b), (c), and (e). Early models of the oven were simply

Fig. 6. Basic circuit of the oscillator:
tight fitting covers for the crystal with one end left open for the insertion of the crystal. It was soon found, however, that the heat losses through the pins of the crystal can, via the crystal socket, led to a variation of the heat loss of the system such that the crystal temperature changed at about $1 / 10 \mathrm{th}$ of the rate of ambient temperature change, despite a good control of the oven temperature.

The final model constructed is illustrated in Figs. 3, 4(a), 4(b), and 4(c). This oven has closed ends and the crystal and its holder are fully enclosed, with only fine wires leading from the crystal connecting pins to the feedthrough insulators placed in the end wall of the oven, thus greatly increasing the thermal resistance between the crystal and the outside world. The result has been to increase the control factor of the oven from 10 to 130 -the control factor being the ratio of change of crystal temperature to ambient temperature, with the oven inside its lagging.

The oven walls are entirely of copper, the body being made of $\frac{3}{4}$-inch i.d. water pipe. The end caps are formed from standard 'Yorkshire' fittings, made specifically to cap-off such pipes. The fittings are modified by shortening them to the dimensions shown. One of the end caps is sweated onto the body using normal soldering techniques. The other cap is secured to the body by two screws as shown. The author's model was finished by fully tinning all surfaces of the body. An earthing tag is fixed to the screw securing the crystal socket to the end cap.

The heating element is wound onto the tubular oven wall, over a layer of adhesive paper tape applied first for insulation. The winding is then varnished to secure the turns in place. The thermistor, which is a miniature glass encased type, is placed directly on top of this winding. It may be secured by any suitable adhesive, or another small piece of adhesive tape, and a further coat of varnish applied to lock the device in position. Next the leads of the thermistor are sleeved to avoid shorts to the oven body. The winding and thermistor are covered with a further layer of paper tape, and the ends of the heater winding and the thermistor leads are soldered to $7 / .0076$ twisted pairs of p.v.c. insulated wire, as shown in Fig. 4(b). The whole is then again covered with paper tape, and varnished.

The completed oven is shown in Fig. 4(c) with the end cap removed to show the mounting of the crystal and its socket.

The design should be easily adaptable to other forms of crystal such as those in B7G encapsulation, but the resistance of the heater winding should be inversely proportional to the surface area of the finished oven body. Such changes in turn may mean, with large ovens having low values of winding resistance, that a different output stage with greater current gain and current carrying capacity may be needed following the operational amplifier.

The wound heating element may be replaced with four or five $\frac{1}{2}$ watt metal oxide resistors arranged round the tubular body of the oven, provided the thermistor is in close contact with one of the resistors and the body of the oven. The resistors must be evenly spaced and also in good contact with the oven body. Five such resistors of 10Ω value in series may be used. Suitable resistors are Radiospares ' $\frac{1}{2}$ watt oxide', Electrosil TR.5, and Welwyn MR.5. The resistors and thermistor should be given several coats of varnish to ensure the best thermal contact, after they have been secured to the oven body. with a narrow band of paper tape. Fuller details of the materials used in the construction of the oven are included in the appendix.

Fig. 7. Complete circuit of the 1 MHz oscillator. The final two transistors form a shaping circuit to provide the required square-wave output.

Fig. 8. Results of a 500-hour frequency drift test on the frequency standard (a), showing in detail the initial warm-up phase (b).

The $\mathbf{1 M H z}$ oscillator circuit

The basic oscillator circuit is shown in Fig. 6. It is a frequently used circuit for parallel resonant crystals but in its simplest form as shown is not sufficiently stable for the frequency standard of a digital counter-timer. The main problem is the temperature dependence of the transistor parameters, in particular the capacitance of the junctions.

One solution that has been used in a commercial instrument is to swamp the transistor capacitances with large values for C_{1}, and C_{2}. In that particular case C_{1}, and C_{2}, were each 470 pF . This process cannot be taken too far, because of the reduction of the coupling between the crystal and the rest of the circuit.

The author's solution to the problem is to use lower values for $C_{1}(330 \mathrm{pF})$ and C_{2} (100 pF), and then to decrease the loop gain by emitter circuit degeneration. The value used is approximately half the resistance value at which the oscillator just starts, so that oscillation is assured under all circumstances. This method gives good results, and reduces the effects of all the major parameter changes in the active device, as well as those due to supply variations. It is essential in determining the value of this resistor that it should be done with $V C$, set at its minimum value (approximately 2 pF with the type quoted in the appendix), since the coupling in the circuit is then at a minimum.

The complete circuit of the oscillator is shown in Fig. 7. The output of the oscillator is applied to a two-stage direct coupled shaping circuit. Positive feedback is applied, via a 15 pF capacitor, to ensure sharp transitions at the pulse edges. The current level in the output stage and the drive available from the driver stage ensure an adequate 'fan-out' (when driving t.t.I. or d.t.1. 5 -volt logic elements) of up to 15 standard loads. The output waveform is a square wave of approximately $1: 1$ on-off ratio and 5 volts amplitude.

Fig. 8 shows the results of a 500 -hour drift test, including the initial warm up phase. It will be seen that there is close agreement between the initial warm-up curve and the warm-up curve for the oven, as determined with a calibrated thermistor in place of the crystal (Fig. 5), assuming the crystal's temperature coefficient to be -1.1 parts in 10^{6}. At 400 hours the whole system was switched off to check the effect of this on the crystal stability. After a period of exactly 10 hours the system was switched on again and, as can be seen, there was little if any effect.

All measurements were made against the Droitwich $200-\mathrm{kHz}$ standard frequency transmission, using the author's locked frequency standard ${ }^{2}$. The stability of this transmission is better than 1 part in 10^{10}. Measurements of the relative drift were made over 50 beat periods which, with the typical error of -1 to -1.4 Hz shown on the curve, means a measurement period of some 35-50 seconds. Assuming these figures, a measurement accuracy of 1 part in 10^{8} can be claimed with reasonable confidence.

Fig. 9. Circuit of +5 V shunt stabilizer for oscillator supply and for d.t.L or t.t.1. logic of a counter-timer.

Electronic frequency control

The oscillator circuit of Fig. 7 includes a varicap (variable capacitance) diode which may be linked into circuit as shown to enable the oscillator to be pulled onto frequency with a positive control voltage via the $150 \mathrm{k} \Omega 2$ resistor. The intention of adding this diode was to enable the standard to be placed in a phase lock loop, such as that in the author's frequency standard referred to above ${ }^{2}$. The control may, of course, be used with a suitable variable supply to control the frequency, without a phase lock loop, but the stability of the standard will then be considerably degraded by the temperature coefficient of the varicap diode. The diode may be selected from normal diodes for a capacitance at -1.5 V of about 12 pF . The diode used by the author is a selected HS 1010 , similar to the OA200. The Q factor of the diode need not be high. The diode was selected on a bridge, by connecting a 1.5 V battery in series with the diode to produce sufficient reverse bias to prevent forward conduction due to the bridge energization voltage.

Construction of the standard

The prototype was assembled on a single-sided printed circuit board, as shown in the photograph at the beginning of the article. The board carries the crystal in its oven, which is surrounded by approximately $\frac{3}{8}$ inch of polystyrene foam and enclosed in a white painted metal case.

The oven controller is that part of the circuit mounted between the TO-66 power transistor, the oven, and the $250 \mu \mathrm{~F}$ capacitor, occupying a space of 1×1.5 inches. No heat sink is needed on the TO-5 transistor in series with the oven heater, owing to the switching mode of operation which greatly reduces dissipation in this device.

The oscillator circuit is to the right of the oven, and the remainder of the board is taken up by a high performance shunt regulator, controlling the 5 V supply to the logic elements of the counter-timer and to the oscillator circuit on the board. The potentiometer is the voltage setting control of the stabilizer. A shunt regulator is used
since, although there is little to choose, on the grounds of efficiency, between series and shunt regulators at these low voltage and current levels, the shunt regulator is almost completely free from voltage surges at switch-on and at switch-off. An additional advantage of the particular shunt circuit used is that it is a twoterminal device, and needs no additional voltage supplies. The series resistor of this shunt regulator (which may be a lamp for better regulation) is external to the board. The circuit is, to all intents, a high power zener diode with a very low slope impedance. The circuit is included in the appendix.

REFERENCES

1. "Surface Temperature Thermometer" by L . Nelson-Jones. Wireless World. April 1969, pp. $180-183$.
2. "Portable 1 MHz Frequency Standard", by L. Nelson-Jones. Wireless World February 1968. pp.666-671. Reprint available from Trade Counter, Dorset House, Stamford Street, London S.E.I. Reprint No. 3, price 3s including postage.

Appendix

Oven controller

$\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3} \ldots \ldots \ldots .150 \mathrm{k} \Omega, \quad 2 \%$, $\frac{1}{2} \mathrm{~W}$ metal oxide Radiospares $\frac{1}{2}$ W Oxide, Electrosil TR.5, Welwyn MR. 5
$R_{4}(1 k \Omega)$
$\mathbf{R}_{5}(2.2 \mathrm{k} \Omega) \ldots \ldots \ldots \frac{1}{2}$ or $\frac{1}{f} \mathrm{~W}, 10 \%$ carbon
$\mathrm{C}_{1} \ldots \ldots \ldots \ldots \ldots \ldots .0 .22 \mu \mathrm{~F}, 20 \mathrm{~V}$, Radiospares ceramic disc
$\mathrm{C}^{2} \ldots \ldots \ldots \ldots \ldots \ldots . .0 .01 \mu \mathrm{~F}, \quad 500 \mathrm{~V}$, Radiospares, ceramic tubular
$\mathrm{D}_{1} \ldots \ldots \ldots \ldots \ldots .$. OA200, HS1010, etc. Almost any silicon diode is suitable
$Z_{1} \ldots \ldots \ldots \ldots \ldots .3 .9 \mathrm{~V}, 250$ or 400 mW , zener diode Radióspares, Mullard, Texas, etc.
IC $_{1} \ldots \ldots \ldots \ldots \ldots$. National Semiconductors LM 709 CN , 14 -pin dual-inline package. Athena Semiconductor Marketing Co. Ltd., 140 High Street, Egham, Surrey
$\mathrm{Tr}_{1} \ldots \ldots \ldots \ldots \ldots .$. SGS C426, TO-5 transistor. Basic requirement is for less than $0.5 \mathrm{~V}_{\text {CEsat }}$ at $\mathrm{Ic}=250 \mathrm{~mA}$, and $h_{\text {Fe }}$ greater than 60 at 250 mA

Crystal oscillator

Crystal
.............STC Style D can. 1 MHz (with 30 pF), parallel resonance, to drawing ITA 202443 NATO Ref: 5955-99-194-5332. Frequency tolerance $\pm 0.005 \%$ from -40° to $+85^{\circ} \mathrm{C}$. Electroniques, Edinburgh Way, Harlow, Essex, supply a $1-\mathrm{MHz}$ crystal similar to the above type at a much lower price, with a reduced specification on temperature coefficient. This cheaper type was used in the prototype, and is quite adequate in view of the oven performance. The full specification represents approximately $0.4 \mathrm{part} /$ 10^{6} per ${ }^{\circ} \mathrm{C}$, as against that used by the author of 1.1 parts $/ 10^{6}$ per ${ }^{\circ} \mathrm{C}$, with which all the above results were obtained.
$R_{1} \ldots \ldots .150 k \Omega R_{6} \ldots \ldots \ldots .10 k \Omega$ $\mathbf{R}_{2} \ldots \ldots \ldots .68 \mathrm{k} \Omega^{*} \mathbf{R}_{7} \ldots \ldots \ldots \ldots 3.3 \mathrm{k} \Omega$
$\mathrm{R}_{3} \ldots \ldots . .68 \mathrm{k} \Omega \Omega^{*} \mathrm{R}_{8} \ldots \ldots470 \Omega$
$\mathrm{R}_{4} \ldots \ldots \ldots .150 \Omega \mathrm{R}^{*} \mathrm{R}_{9} \ldots \ldots \ldots \ldots . . .47 \Omega$
$\mathrm{R}_{5} \ldots \ldots . .2 .7 \mathrm{k} \Omega^{*}$
${ }_{*} \frac{1}{2} \mathrm{~W}, 2 \%$ metal oxide, Radiospares, Electrosil TR. 5 or Welwyn MR.5. Other resistors $\frac{1}{2}$ W, 10% carbon.
$\mathrm{C}_{1}(330 \mathrm{pF})$
$\mathrm{C}_{2}(100 \mathrm{pF})$. Radiospares silvered mica 1\%
$\mathrm{C}_{3}(15 \mathrm{pF})$ \qquad .polystyrene, ceramic or silvered mica types are suitable, 10% tolerance or better
$\mathrm{C}_{4}(0.1 \mu \mathrm{~F})$ ceramic discs
$\mathrm{D}_{1} \ldots \ldots \ldots \ldots \ldots . . \mathrm{OA} 200$ etc. selected for varicap use (see text)
$\mathrm{Tr}_{1} \ldots \ldots \ldots \ldots \ldots . . \mathrm{BC}_{108,}$ BC168 etc.
$\mathrm{Tr}_{2}, 3$.................2N2369A, BSX20
$\mathrm{VC}_{1} \ldots \ldots \ldots \ldots . .2-60 \mathrm{pF}$ Mullard trimmer CO10AA/60E

Crystal oven

Thermistor $\ldots \ldots . .$. . Radiospares THB11 used in prototype. Equivalent to STC GLI6.
Heater...............Wound with silkor cotton-covered 42 s.w.g. cupronickel (Eureka) wire (Figure 4(a)), 50Ω total
Body pipe
End caps............ Yorkshire stop end, Cu61/3/ in
Paper tape............Masking tape (Sellotape, Scotchtape etc)

5-volt stabilizer

$\mathrm{R}_{1} \ldots \ldots .1 .2 \mathrm{k} \Omega^{*} \mathrm{R}_{4} \ldots \ldots \ldots \ldots .22 \mathrm{k} \Omega$
$\mathbf{R}_{2} \ldots \ldots \ldots 1.5 \mathrm{k} \Omega * \mathbf{R}_{5} \ldots \ldots \ldots \ldots .330 \Omega$
$\mathrm{R}_{3} \ldots \ldots \ldots \ldots 1 \mathrm{k} \Omega \quad \mathrm{R}_{6} \ldots \ldots \ldots \ldots . .680 \Omega$

* $\frac{1}{2} \mathrm{~W}, 2 \%$, metal oxide; rest $\frac{1}{2} \mathrm{~W}, 10 \%$ carbon
$\mathrm{C}_{1}(250 \mu \mathrm{~F}) \ldots \ldots . . .15 \mathrm{~V}$ electrolytic
$R V_{1}(1 \mathbf{k} \Omega) \ldots \ldots .$. wirewound potentiometer (Radiospares, preset)
$\mathrm{Tr}_{1},{ }_{2} \ldots \ldots \ldots \ldots .$.as 2 N 4058 high gain p-n-p
$\mathrm{Tr}_{3} \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{BC} 108, \mathrm{BC} 168$ high gain n-p-n
Tr_{4} gain n-p..............2N3054, TO-66 n-p-n silicon power
$\mathrm{ZD}_{1}(3.3 \mathrm{~V}) \ldots250$ or $400 \mathrm{~mW} 5 \%$ (at 5 mA) zener diode
Rsseries resistor (wire wound) dropping resistor. Minimum value approximately 15Ω with 12 V supply. Limit is set by heat-sink area of power transistor and current gains, but the former is likely to be the greatest limitation. The dissipation in Tr_{3} also should not be ignored. Series resistor chosen for maximum demand current of logic elements $+20 \%+7 \mathrm{~mA}$ (for oscillator on board).
Warning. Wires should not be soldered direct to the pins of any crystal, unless this is of the wire ended type, in which case a heat shunt should be used. A crystal socket should always be used with types designed to plug in. Failure to observe this precaution will lead to large and unpredictable drift rates for a considerable period after soldering. With glass encapsulated crystals there is the additional risk of glass fracture.

Cecilia—Saint or Temple Prostitute?

 An impression of Sonex ${ }^{\mathbf{7} 0}$The journey from central London to the Skyway Hotel at Heathrow proved easy but slow. The idea of simply "dropping in" was therefore not entertainable and the tickets that were readily available beforehand (but which had to be given up at the door) need never have been printed. Entrance as such was free, but the "Official Catalogue" cost 4s.

Exhibition rooms were on each side of a long narrow corridor on the ground and first floors. Demonstrations took place in rooms facing out of the hotel, each exhibitor having a room (or two) for this. Discussion of technical points and the inspection of equipment could take place in quiet rooms on the other side of the corridor.

The type and quality of the demonstrations (designed, one presumes, to give sonic evidence of quality) varied considerably. There were three broad categories:

1. Exhibitors with a single component for demonstration in conjunction with other equipment the characteristics of which may or may not be known. Examples in this group include J. E. Sugden (class A amplifiers performing into Quad electrostatic speakers), I.M.F. (transmission line speakers driven by Dynaco amplifiers), and Acos (a ceramic cartridge type 104).
2. Demonstrations of a range of similar items requiring the same ancillary

"We believe that the general public have realized the deficiencies of bookshelf loudspeakers, and therefore. . . ."
equipment. This was characteristic of loudspeaker manufacturers with a wide range of models (K.E.F., Wharfedale and Richard Allan).
3. Demonstrations involving two or more items of a manufacturer's equipment, where the characteristics of the components could not always meaningfully be separated by the listener. An example here is Cambridge Audio's P100 amplifier driving their transmission line speaker.

Problem of judgement

Though these categories are badly defined there is an underlying problem to which we drew attention with respect to the Audio Fair. How is the visitor to judge performance when there is more than one unknown factor? For example, if you can (or think you can) hear the difference between class A and class E performance with a given speaker are you likely to be able to differentiate the quality of two very good loudspeakers, one being driven by a class A amplifier and the other by a class B? If you found a given loudspeaker demonstration fatiguing could it be the amplifier's fault? If you came to the exhibition with the intention of selecting a speaker might you not pass over a good specimen whose performance was "poor" because of a weak link earlier in the chain? These are possibilities that point to an obvious lack of sophistication in the demonstration methods. Not that this is a call for proof-by-oscilloscope methods.

Ideally there should be available standard reference equipment-a standard pickup, amplifier, speaker and, possibly, tape recorder-enabling the listener to relax knowing that each item in the chain, save that being demonstrated, was a standard. This standard could be a non-commercial piece of engineering or a generally available unit. Without the emergence of some such standards we think that the success of better equipment could be retarded and the visiting public may well become increasingly perplexed if not exactly dissatisfied.

We have discussed the types of demonstration but not their quality, which ranged from impeccable to banal. The standard for all was set by J. E. Sugden in the demonstration of the A21 and the A51/C51 class A amplifiers. There were
no cant phrases or fierce technical terms to be heard in the listening room. The visitor was played a short but excellently selected range of musically complete examples, each one introduced simply and without gush. For those with ears to hear all that was revealable was revealed. If you wished to be technically informed you were free to trip across the corridor but the technically innocent needed to endure no embarrassing onslaught. Cecilia, who is surely the patron saint of hi-fi, was paid such homage in very few other rooms. She was frequently buffeted, knocked off her pedestal, mauled and ravished. In K.E.F.'s room the whole range of speakers, including the new Chorale, was gone through with obvious disregard for the music. Enormous contrasts of apparent source size and perspective, tonal balance and coloration, left the listener high and dry. It was quite impossible to come to terms with anything for lack of bearings.

Very interesting is the similarity in

performance of the Cambridge Audio and I.M.F. transmission line speakers.

Cambridge Audio, in characteristic style, employed unselected records taken from private collections of the company's engineers to show up the noise-peak clipping ability of their amplifiers. This was risky as one tends these days to assume that performance deficiencies (especially "coloration") are attributes of the speaker rather than the record. The abnormally low frequency response, and "neutral" sound of the C.A. R50W speakers are characteristics of the transmission line principle. They have been constructed as tall narrow structures to take up little floor space and to disperse the sound over a wide angle. The bass is
supplied by a K.E.F. B 139 driver in a damped tapered pipe which crosses over to a B 110 driver at 400 Hz also in a pipe. The two tweeters are one Celestion and one S.T.C. unit.
I.M.F. demonstrated the "Monitor" and the "Studio" speakers-both built on transmission line principles. The claim for these speakers is that they produce a "plane sound source" (whatever this means). The image produced is very forward. Demonstration was from a prepared tape which contained incomplete musical examples, interrupted by a variety of assertions. Had the tape been shorter, the musical examples complete, and the commentary less ornate this could have been a valuable "lesson".

The transmission line principle results in such low electrical efficiency that for very ligh acoustic output there is the problem of cone break-up. In the mid-range this will have very tiring effects and the only solution likely (in the absence of even stiffer cone materials than at present available) is the use of say four small-cone driver units acting as one unit. This involves the expense of four magnet structures. The bass performance (flat to subsonic frequencies) must be achieved by feeding into the room at relatively high pressure, otherwise how can there be any large movement of air at low frequencies? Anyhow transmission line bass has a characteristic all its own-one person's description is "toothpaste bass".

Improved stereophony

The American company Acoustic Research, now having their products distributed in this country by Bell \& Howell, provided a demonstration of 4-channel stereophony. To those who attend a fair number of live concerts the improvement over two channel stereo in getting closer to the real thing must have been immediately obvious. It is just as one would expect from the physics of sound propagation. However, having the information channelled into four speakers from four microphone sources does involve compromise. You cannot walk about in the sound field as you can in a concert hall and get the right effect-moving close to the rear speakers reversed the sound field because they were true sound sources and not the media for reverberation alone.

Moving on from the 4-channel stereo to the Lowther demonstration room afforded a very valuable lesson. Donald Chave produced a completely convincing "auditorium sound" using four speakers and two channels. Instead of single speakers to left and right, two were used in each channel. One speaker of each pair had a forward presentation; the other (an Acousta) delivered the sound as from a greater distance. The effect was immediately acceptable as a true solid sound source that was independent of listener position and did not require precise speaker siting. In our opinion this was nearer the true sound than anything previously heard at any time. A similar experimental system was described
recently in Hi-Fi News*. Lowther hope to bring out, later this year, a simple enclosure combining a forward and a rearward sound source. The rearward sound source need only supply frequencies down to about 200 Hz to give the full spatial effect.
How can the exhibition be summed up? As a deliberate break away from the Olympia Audio Fair, Sonex ' 70 seemed, on balance, to be the same thing less the post-radiogram unit-audio lines. The rcoms were small, identical in size, and had solid walls. Sound from other demonstrations did penetrate to about the same extent as at Olympia-but there were several unnecessarily loud demon-

Books Received

Weather Radar for Pilots, by Captain G. E. Manning, is a specially commissioned handbook, published for the Board of Trade Directorate of Flight Safety. It describes the use of radar in the avoidance of turbulence associated with thunderstorms. Airborne weather radar provides the pilot with a "picture" of turbulence-producing clouds in his path. and indicates the areas of intense activity which he should avoid. Detailed information from many sources is brought together to guide pilots in using weather radar. The nature of atmospheric turbulence and the use of radar for ground mapping purposes is described. Guidance is also given for safe flight in occasionally unavoidable turbulence. Pp. 102. Price 13 s (13 s 8 d by post). H.M.S.O., 49 High Holborn, London W.C.I.

BBC Handbook 1970. As might be expected, most of the space in this annual publication by the B.B.C. is devoted to programme news and past and future policies. In his foreword, Lord Hill (chairman) deals with the effect of the changes in network radio and the B.B.C's financial problem. There are, however, 44 pages under the "engineering" section, fuH of useful reference material. Half of these pages contain local area maps giving TV transmitter locations and coverage, both v.h.f. and u.h.f. In the case of u.h.f. locations, these also include co-sited I.T.A. transmitters. Another set of maps gives similar data for v.h.f. radio stations. Next come tables showing the location, frequency/wavelength, power of and areas served by, all long- and medium-wave stations, The maps and tables are supported by a short article giving information on the B.B.C. engineering services and another offering advice on how to get good reception in the radio and television bands. Readers may be surprised to learn that the B.B.C. currently operates 281 studios and 469 transmitters in the U.K. Pp. 303. Price 10s. BBC Publications, London WIA IAR.

Computer Weekly Yearbook 1970, edited by Malcolm Butler, is a "guide to computer services, peripherals, suppliers, bureaux and consultants." The main contents (which follow a short appraisal of the computer and data processing service industry in the U.K.) fall into four sections. A 'Selected Review' gives information on equipment and techniques, and 'Services Guide' provides an alphabetical list of organizations offering services to the data processing industry. The third main section concerns 'Mainframe, Ancillary and Peripheral Equipment and Supplies'. Finally there is an 'Alphabetical list of names and addresses'. Pp.196. Price 40s. I.P.C. Electrical-Electronic Press Lid, Dorset House, Stamford Street, London S.E.I.
Trader Year Book 1970. The 41 st edition of this legal, technical and buying guide for the radio, television and domestic electrical industries, is available price 40 s from I.P.C. Electrical-Electronic Press Ltd, Dorset House, Stamford Street, London S.E. 1.

Which Type of Microcircuit?

An impression of a recent London microelectronics conference

No printed conference papers and a completely "off the record" approach certainly encouraged the speakers and delegates to speak their minds, in the early sessions at least, at the recent conference "Use of Microelectronics" held at the Royal Garden Hotel. London. The conference was sponsored by the journals Microelectronics and Electronic Equipment News. Some extremely forthright statements were made as users and semiconductor manufacturers crossed swords.

Manufacturers extolled the virtues of their products and bipolar battled with m.o.s, custom design took on "off the shelf' standard ranges, hybrids challenged monolithics and equipment manufacturers took on the lot in an effort to find the best solutions to their problems.
Consider the problems of an equipment manufacturer about to embark on a new digital design. Which technology should he use? He might decide on m.o.s. circuitry, but which type of m.o.s. is best suited to his needs? (One man's m.o.s.t. is another man's least!) High threshold, low threshold, silicon gate, the nitride process or complementary silicon gate? With m.o.s. technology he can enjoy low power dissipation per gate which allows more gates per chip, fewer wire bonds, less packages per system, fewer inter-package connections with the extra reliability that this affords. Cost can be low at around the fourpence per gate mark.
But what about the reliability of the m.o.s. circuit itself? Early problems with the stability of the gate threshold, mainly due to contamination of the region below the gate, have largely been solved by improved processing methods, but no one knows much about the long term reliability of the m.o.s. circuit. Try getting some literature on the subject-you will find it difficult.

If m.o.s. is to be used is the equipment manufacturer going to employ a standard range of microcircuits or is he going to plump for custom design? With the former, a recommended approach is to use m.s.i. blocks "individualized" by a programme contained in an m.o.s. readonly memory, the bit-pattern in the memory being specified by the equipment manufacturer.

If the equipment manufacturer decides that the product he is designing will enjoy
a large number of sales, or if-in the case of low volume equipment-a particular need cannot be met by standard circuits and cost is of secondary consideration, he may decide that the large capital outlay required for a custom designed m.o.s. microcircuit is justified. In which case he has to choose between designing the circuit himself, according to rules laid down by the semiconductor manufacturer, or he can let the semiconductor manufacturer perform this task. In either case he has to make arrangements for a second source of supply.
It could be that m.o.s. is not fast enough for the equipment in mind, although m.o.s. manufacturers are quick to point out that circuit speed is not system speed. Using clever circuit "quirks" system speed can be made quite fast. Shift registers up to 25 MHz and logic between 6 and 8 MHz are on the cards.

However, if this is not fast enough the equipment manufacturer will have to put up with the higher power dissipation of bipolar circuits and face another set of problems. Cost will be higher and custom design more difficult. In fact many bipolar custom design houses want to take the job of design right out of the hands of the equipment manufacturer; as one put it, "we must have the last shout".

A third choice open to the equipment manufacturer is the hybrid microcircuit (thick or thin film). He can have combinations of transistors, operational amplifiers, normal or m.s.i. logic circuits, power transistors, passive components in film or standard form laid down on a single substrate. Custom design costs are less than for custom monolithic circuits and the process, from initiation to production, is quicker.

One speaker said that before very long 50% of all run-of-the-mill circuitry will be made in hybrid form". His mention of three-transistor amplifiers practically brought laughter from the 1000 plus transistors-per-chip digital men. Another speaker said that 50% of all semiconductor memories made will employ some kind of printed film interconnection system ("zero resistance hybrids").

We feel that both speakers understated the case for hybrid microcircuits and are convinced that hybrid techniques are
going to be used more and more right across the board from three-transistor amplifiers to complex multi-chip digital, or digital /analogue, systems. Evidence of this was seen at the recent Paris Components Show (see last month's issue).

There are a number of problems to be solved. Should the monolithic chips be encapsulated separately or should they be fixed to the substrate in their "naked" form? If the latter course is adopted should beam lead or wire bonding chip-tosubstrate connections be employed?
As one speaker pointed out, beam lead chips are bound to be more expensive because of the general adoption of the wire bonding techniques in normal packages. (TO-18, TO-5, dual-in-line, etc.) Beam lead chips are made only for hybrids so any surplus cannot be used for normal components and therefore they cannot enjoy the price advantage of large scale production.

A solution to this problem was suggested by a speaker who said that normal wire bonded chips could be supplied mounted on a "spider", the legs of the spider being bent down for connection to the hybrid substrate.

The bonding of the chip connections is also a problem in multi-chip hybrid assemblies. Even if the bonding machine was so good as to make only one faulty bond in a hundred, complex circuits could be expected to have more than one fault per substrate. Expensive fault chasing and repair would have to be applied to every substrate.

Another difficulty-how much should be placed on a single substrate? Such hybrids would not be repairable after encapsulation and therefore would make very expensive throw-away items indeed.

In spite of these difficulties hybrid techniques will be employed more and more in the future. Looking into the crystal ball we feel that as the speed of m.o.s. circuits increases and as the manufacturing processes for m.o.s. microcircuits is simpler and cheaper per function (lending itself more readily to custom design) m.o.s. will gradually oust bipolar monolithic circuits in many areas and that the thing for the future will be m.o.s. monolithic circuitry used in conjunction with film interconnections and film passive components.

When it comes to synthesizers, setting speeds can be really important. Our FSM 535 sets
 frequency, modulation and level really fast. Accurately tool The ovened crystal gives stabilities of 3 in $10-^{9}$ per day.

The all-transistor FSM 535 uses
solid state techniques enabling instant operation and the use of internal or external battery supply.

It has a wide frequency range covering 300 Hz to 470 MHz in 100 Hz increments with fine tuning filling the gaps. You can even make frequency and FM deviation measurements. Add to that full modulation - AM, FM, Phase Mod, PulseMod, Sweep, evenSSB

- and the facility to extend frequencies with add-on units to 1.5 GHz with the same accuracy and resolution and you have a truly world-beating synthesizer. Small wonder it's being used by post and telegraph authorities throughout Europe and for Military satellite ground stations.
Post the magazine's reply-paid card and we'll send you our data sheet of full details.

> GOLARTRON Schlumberger

The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

There is an M in Ferguson

it stands for Motorola and you'll

see it in the Ferguson single standard 3000 colour TV chassis. It's the mark of Motorola quality and reliability that got radio on the road and helped to put men on the moon.

A few facts:
Motorola is one of the largest semiconductor manufacturers in the world. Principal manufacturing facility and development labs in Phoenix, Arizona: European HQ in Geneva: European factories in France and Scotland.

Motorola understands quality and reliability - it was their equipment that provided the essential communication links (radio and TV) between the moon's surface and earth.

That's why there is an M in Ferguson.- it stands for reliability
Motorola Semiconductors Limited
York House, Empire Way, Wembley, Middx. Tel:01-9030944. Telex: 21740 Motsem Wembley.

Motorote makion ,

Electronic Building Bricks

1. What is electronics?

by James Franklin

Every time you watch television, listen to the radio, travel in an aeroplane, or shudder at your bank statement or your electricity bill you are experiencing in a fairly direct way the impact of electronics on your life. Every time you use a manufactured commodity, such as sugar, petrol, detergent, or some mass-produced item such as a motor car or a pair of shoes, there is a good chance that electronics has figured somewhere in its production. Yet, probably, you are hardly aware of all this.

The contradiction, that electronic technology is all-pervading and yet unnoticed, is explained by the fact that it is largely concerned with operations on an invisible, intangible commodity-information. When electronically processed information is eventually made visible-say, on a television screen or a computer print-out-it is, of course, in a different form, suitable for human perception. This series of articles explains how electronic techniques
are used to transmit and process information before it is made perceptible.

In practice this means that the information is represented by electrical quantities and that various operations are performed on them-coding. storage, magnification, attenuation, comparison, counting, integration and so on. Most of these operations -as concepts-will be already understood by the intelligent non-technical reader, at least intuitively if not in precise detail, so the approach will be to emphasize this operational aspect: what the electronic devices do rather than what they are. Any non-technical person who tries to get some idea of what electronics is about simply by examining pieces of electronic equipment will end by being completely baffled and demoralized: the construction gives hardly any clue to the function. It is better to forget the "hardware", at least to begin with, and concentrate on the functions that it performs.

Block diagram of a black-and-white television set.

In fact this approach does accord with the mental processes of electronics engineers, who, before they get down to detail, think of the systems they are designing as groups of functions and draw what they call block diagrams. Two examples are shown here-a television set and an electronic computer. As can be seen, each block in these diagrams has written in it the operation it performs. (Don't worry about the meanings of the labels at this stage.) The lines connecting the blocks represent paths for information and indicate that the separate functions are acting. on each other through this information.

Such functional blocks, and the electrical representations of information, are what we have called "electronic building bricks" in the title. It is important to get this clear straight away, and not assume automatically that the "building bricks" are the transistors, resistors, capacitors, switches, dials and other devices that make up the electronic hardware.

Before attempting a cut-and-dried answer to the question "what is electronics?" it might be as well to remind ourselves that from the human, organizational point of view electronics is both a science and an engineering activity. The scientist studies electronic phenomena for his own interest and for what they tell him about the nature of the universe: the engineer makes use of the discoveries of the scientist in order to serve human ends. This is an over-simplification because the activities of the scientist and the engineer do tend to merge and become interdependent. For example the stimulus to invent new things that arises from the business of engineering sometimes results in the discovery of new physical phenomena.

In this series of articles we are largely concerned with the engineering side-the uses to which electronics may be put-but in order to do so we must know a little about the basic phenomena. Fortunately this does not demand a rigorous study of the physics of electronics. The nontechnical reader would be surprised to find how much electronic equipment is designed and made to work without the designer having thought very deeply about basic principles. Amateur experimenters tend to jump straight in and get things working by trial-and-error-and why not! Professional engineers, although they have probably studied the fundamentals at one time, design largely from practical formulae, data and other "packaged" information in text-books and manufacturers' literature-and from experience of what has been found successful in the past. Thus a practical understanding of "electronic building bricks" can be obtained with only a nodding acquaintanceship with the physics of electronics.

We shall make our nods to the basic phenomena as the series goes along. For example, electronics is so called because it is concerned with the use of electrons, so we shall consider the electron a little, and discuss electron movements and flow rates. Meanwhile our answer to the question "what is electronics?" is, at this stage: the use of electrons to represent and process information for human purposes.

CIASS Distinction in Ancio AnMincs

A discussion of design problems and how to overcome them

by J. L. Linsley Hood ${ }^{1}$

Since the publication of "Simple Class A Amplifier" the author has received numerous letters asking whether it would be feasible to increase the power output to 15 W , or even 20 W , to provide a greater reserve for use with inefficient loudspeaker systems.

Whilst it would be possible, the problems associated with increased heat dissipation and the provision of suitable power supplies makes this unattractive. In view of the low average power required for normal listening, the question inevitably arose whether it would be practicable to design an output stage which would operate in class A with an inherently low level of high order distortion up to a watt or two, but progress further into class B operation if and when higher powers were momentarily demanded.

There are, unfortunately, a number of snags with the class B operation of transistor output stages, to which the answers are not fully known.

It was pointed out some years ago, by Bailey ${ }^{2}$ and others, that the use of quasi complementary symmetry in such output stages led to an increase in high-order harmonic distortion, associated with the non-linearities in the crossover characteristics at low volume levels, and although the level of total harmonic distortion at maximum power output could be quite low, the distortion content at typical listening levels could be many times greater than this, and would also be of an audibly objectionable type.

A number of schemes have been proposed to overcome this problem, including the use of full complementary symmetry ${ }^{234}$, and various methods of ensuring that there are an equivalent number of forward biased junctions in each limb have been described ${ }^{56}$, including the ingenious semi-complementary triples arrangement used in the "Quad" amplifier".

However, in the author's experience, some class B transistor amplifiers-including those employing full symmetry, which is

Fig. 1. Crossover distortion in a class B stage employing transistors with an fr of about 2 MHz . (a) Low frequency sine wave at 10 mA . (b) High frequency sine wave showing the effect of hole storage on the crossover discontinuity under light load conditions. (c) Influence of hole storage and n-p-n/p-n-p asymmetry under high current conditions at 200 kHz . (d) Improvement of conditions in (c) by reducing source impedance.
presumed to eliminate the major fundamental snags of this type of operation-having an impeccable performance on paper, did not have the tonal quality which had been expected. Since harmonic distortion at both high and low power levels had been found to be well below the level at which audible effects might reasonably be expected in some of the designs tested, it seemed more probable that the audible ill-effects were due either to transient instabilities associated with loudspeaker loads-perhaps related to changes in the reactance of the base-emitter junction at the current cut-off point-or to high-frequency crossover-type distortion arising from hole-storage effects. Hole-storage depends on the presence of holes produced when current flows in a semiconductor-even though the current is due to majority carriers (electron flow). The greater the current the greater the number of holes and the worse the problems of hole storage.

Hole-storage phenomena

The expected result of hole storage in the base region of a transistor, following the attempted termination of a high emitter collector current, is that the transistor remains in a conducting state after the forward base bias has been removed. This has the effect, amongst other things, that the normal crossover discontinuity shown in Fig. 1 (a) becomes displaced from the mid-point of the transfer waveform as the frequency is increased, as shown in Fig. I (b).

These waveforms were generated in a simple complementary pair emitter-follower circuit, without additional negative feedback, driving a resistive load. (In order to assist its display the crossover effect was deliberately exaggerated by the use of an inadequate quiescent current.) Provided that the peak currents flowing through the transistors are small, this effect is innocuous. However, if the peak currents are increased, by reducing the load resistance, the crossover waveform rapidly deteriorates as shown in Fig. 1 (c), and increasing the forward bias to give a more suitable quiescent current has little effect in removing this prominent notch, until the forward bias is almost equivalent to that of class A operation.

It is known from experience that these effects can be minimized by the use of transistors with good high-frequency characteristics and low-impedance base-emitter return paths. A low-impedance driver stage will also be effective provided that it does not become cut off (as in the case of the Darlington pair) when the input signal reverses polarity.

The effect of reducing the driver circuit impedance from 2000Ω to 100Ω is shown in Fig. I (d).

The lack of effective symmetry between the upper n-p-n device and the lower p-n-p is also shown in Fig. 1 (c). This effective asymmetry is reduced if the source impedance is reduced.

It was noted that this effect did not become apparent, even under high emitter current conditions, until the operating frequency approached $0.05 f_{\mathrm{T}}$. At $0.1 f_{\mathrm{T}}$, the problem was severe and this argues that the occurrence of high transient currents-which may arise with certain loudspeaker systems-and high driver stage output impedances, is most undesirable unless the highest frequency components of the waveform are low in relation to the transition frequency of the output transistors. With the availability of power transistors having transition frequencies of the order of 4 MHz (such as the MJ480/490 series) it is unlikely that hole-storage phenomena will be troublesome at the rates-of-change of signal voltage likely to be encountered in audio amplifier practice so long as the driver stage does not leave the output transistor base open-circuited on cut-off. However, the use of a driver output, or base circuit, impedance not in excess of a few hundred ohms appears prudent. With earlier designs using germanium diffused junction power output transistors, which usually have very poor h.f. performance, this problem could be important, and Dinsdale has referred to a "subjective audible improvement" resulting from the replacement of low transition frequency output transistors with types having better h.f. characteristics.

Transient instabilities on loudspeaker loads

Phase-angle measurements made with a variable frequency sine wave input, from a high impedance source, reveal that even a simple single-unit loudspeaker can present quite complex characteristics. The reactance-which is normally inductive -changes rapidly, and sometimes even becomes capacitive, at

Fig. 2. Circuit for generating the test waveform shown in Fig. 3.

Fig. 3. Test waveform for providing arrested transient input.

Fig. 4. Amplifier performance using 10 kHz test waveform. (a) Response of amplifier showing inadequate stability with reactive load. (b) Response of improved amplifier with reactive load.
frequencies in proximity to cone and structure resonances. In general, the characteristics of most of the common designs of transistor power amplifiers are such that instability problems do not arise with inductive loads, and the inclusion of a small choke, of a few microphenries inductance, in the speaker output lead is a well known technique for avoiding instabilities under adverse load conditions. However, capacitive loads can frequently impair the stability margins of the feedback loop, and it is in this respect that
the reactive characteristics of the loudspeaker load are most significant. Since it was suspected that the region of the output waveform where this might arise most readily was that at which the output transistors were being driven from the conducting to the cut-off state, an input waveform which provided a transient of controllable steepness (by varying the input amplitude), but arrested at the mid-point, was provided by the circuit of Fig. 2.

The waveform generated by this device is shown in Fig. 3 and the result of introducing such a waveform into an amplifier of poor stability margins, coupled to a resistive load shunted by an appropriate value of capacitance is shown in Fig. 4(a). (The broadening of the oscilloscope trace in the horizontal regions at the mid-point of the waveform was due to inadequately recorded h.s. oscillation.)

The output waveform obtainable from a design with better stability margins and improved bandwidth is shown in Fig. 4(b). In both cases the magnitude of the input signal was adjusted so that clipping occurred on both negative- and positive-going peaks.
Since the h.f. instability shown in Fig. 4(a)-which did not occur in the absence of a large input signal, and which required a particular range of shunt capacitance to provoke it at all-also occurred on parts of the waveform preceding the arrested transient, it was concluded that the change in reactance of the base-emitter junction at cut-off or switch-on, was not a major cause of the transient induced instability observed in this particular design.

Square-wave performance and tonal quality

In view of the fact that a loudspeaker system can present a reactive load, of a type which is found in certain circumstances to cause signal induced instability, and since this instability could be provoked by a square-wave input into an amplifier with a suitable

Fig. 5. Amplifier response driving a reactive load (15Ω, $0.47 \mu \mathrm{~F}$) with a 10 kHz square wave. (a) The ringing gives evidence of instability. (b) No transient ring indicates better stability.
reactive load, a series of tests and comparative listening trials was conducted to determine whether there was any audible relationship between the two. In the event, it was found, beyond doubt, that an amplifier system which did not show any sign of instability over the range of load shunt capacitances up to, say, $0.33 \mu \mathrm{~F}$ had a better tonal quality on even a simple loudspeaker system than one in which some shunt capacitor value could cause h.f. oscillation. Moreover, in a more complex loudspeaker system, with a crossover network and high-frequency capacitively coupled "tweeter", it was possible to hear the difference between systems which would, in the lab., with some $R C$ load combination, give a square-wave response such as that of Fig. 5(a) and those which had a response like that shown in Fig. 5(b). No positive distinction could be drawn in listening trials between a system giving a waveform such as Fig. 5(b) and one in which a square-wave input could produce a single overshoot "spike".

Since the frequency of the "ring" waveform in Fig. 5(a) is well beyond the upper limits of the audible spectrum, it is clear that it is not this of itself which produces the undesired sound quality, but rather that this type of behaviour is symptomatic of a different and more objectionable effect when the amplifier is used with a loudspeaker load.
The conclusions which have been drawn from this series of experiments are these: (1) that it is desirable to employ output power transistors in which the transition frequency is at least ten times higher than the highest signal frequency component which is passed to the amplifier from preceding stages; (2) that it is preferable to drive the output transistors from a source which has a low impedance over the whole signal voltage swing, or at least to provide a reasonably low-resistance base-emitter current path; and (3) that the phase/frequency characteristics of the feedback loop should be such that a square-wave output devoid of overshoots is obtained when the amplifier is bench tested with a wide range of shunt capacitance values in an $R C$ dummy load. This latter requirement probably implies either a fairly limited number of stages within the feedback loop or a relatively restricted h.f. bandwidth.

When these requirements had been met, and when the harmonic distortion levels over the range 40 mW up to the maximum rated power output were of a suitably low level, there was no audible difference, in the most careful listening trials, between several different designs. However, it is difficult in class B systems to obtain the desired low level of harmonic distortion at low signal levels without the use of substantial amounts of negative feedback, and this leads to a worsening of the amplifier response to signals containing transients.
The use of a class AB system, if the problems in maintaining the correct forward bias level can be solved satisfactorily, should facilitate the attainment of these desired standards, particularly if the h.f. negative-feedback loop can be made fairly simple.

Next month full details will be given of a $15-20 \mathrm{~W}$ class AB amplifier with the following characteristics:-
Power output: 15 W into 15Ω, or 18 W into 8Ω. (20W with modified output circuit component values.)
Bandwidth: $10 \mathrm{~Hz}-100 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$ at 2 V output; $20 \mathrm{~Hz}-$ $50 \mathrm{kHz} \pm 1.0 \mathrm{~dB}$ at maximum power output.
Output impedance: 0.03Ω (at 1 kHz).
Total harmonic distortion: 0.02% at $15 \mathrm{~W} / 15 \Omega$ or $18 \mathrm{~W} / 8 \Omega$, less than 0.02% at all power levels below maximum output.
Intermodulation distortion: Less than 0.1% at 10 W (12.3 V r.m.s. into 15Ω) and 70 Hz , and at 1 V r.m.s. at 10 kHz .
Square-wave transfer distortion: Less than 0.2% at 10 kHz .

REFERENCES

1. Linsley Hood, J. L., "Simple Class A Amplifier", Wireless World, April 1969.
2. Bailey, A. R., "30-watt High Fidelity Amplifier", Wireless World, May 1968.
3. Williamson, R., Hi-Fi News, Feb. 1969, pp. 320-329.
4. Hardcastle, I., and Lane, B., "Low-cost 15-W Amplifier", Wireless World, Oct. 1969.
5. Shaw, I. M., "Quasi-complementary Output Stage Modification", Wireless World, June 1969.
6. Baxandall, P. J., "Letters to the Editor", Wireless World, Sept. 1969.
7. "Low Distortion Class B Output", Wireless World, April 1968.

Root Hog or Die

Frequency in two dimensions

by Thomas Roddam

The title expresses a rather stronger attachment to the root analysis method of studying circuits than I feel myself. This is probably because it is used for certain classes of problem which I have normally managed to dodge. I had intended to quote rather more of a folk-song, but by chance I discovered that "root hog, or die" crops up in a number of the songs of the bullwhackers on the Santa Fe and Oregon trails and seems to have originated in the hill country near the Finger Lakes, where they used to dig for ginseng.

Back in March we examined the natural behaviour of a circuit made up of inductance, capacitance and resistance. The object was to find out what sort of waveform a circuit will produce if given the chance. This is obviously the sensible waveform to apply to such circuits. The political philosopher will recognize this as the Maoist doctrine of the revolutionary swimming among the peasants like a fish in the lake. We, however, cannot always use the characteristic frequency, which I suppose amounts to dropping a herring, or a Maoist, in the Round Pond.
The essential result, using the same symbols as before, is

$$
\begin{aligned}
& m_{1}=-\frac{R}{2 L}+j\left[\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}\right]^{2} \\
& m_{2}=-\frac{R}{2 L}-j\left[\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}\right]^{2}
\end{aligned}
$$

For the particular case where $L / C>R^{2} / 4$ we wrote the overall waveform as $\epsilon^{-3 t} \cos$ ωt, in which

$$
\begin{aligned}
\alpha & =R / 2 L \\
\omega & =\left[\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

Usually ω is the term we call the frequency, and α is the decrement factor, which also has units (sec^{-1}).

Suppose that we write

$$
\begin{aligned}
& s_{1}=-\alpha+j \omega \\
& s_{2}=-\alpha+j \omega
\end{aligned}
$$

We are dealing with

$$
\exp (\alpha+j \omega)+\exp (\alpha-j \omega)=\exp s_{1}+\exp s_{2}
$$

Now we concentrate our attention on the single thing s. This is a complex number, and can be represented as a point in a plane. Because we happen to have two of these

Fig. 1. Frequencies in the complex plane.
things here, we show them both in Fig. 1. Here we see the two points s_{1} and s_{2}, expressed both as points in the complex plane and as vectors. Because the two complex frequencies were obtained by finding the roots of the current or voltage equation, this is a plot of the roots. Each of these is the solution of a very simple equation: $s=s_{1}$ or $s=s_{2}$. Using the first of these,

$$
\left(s-s_{1}\right)=0
$$

This particular kind of root is called a zero. We also encounter the form $1 /\left(s-s_{1}\right)=0$. We should get this, for example, if we worked with the admittance of a series $L C R$ circuit instead of the impedance. The root at s_{1} is now called a pole.
Concentrating on the one root, we can find some interesting and important features. Let us consider the root shown in Fig. 2. We are free to move this about. If we move it sideways, we shall be keeping ω constant, and altering the value of α. Now α is the decrement term. It tells us how quickly the ringing dies away. It has, as we have seen, the dimensions of "per second" and the nearer the point s is brought to the value $-\alpha=0$ the smaller the decay per second, the longer the time taken for the ringing to die away.
Moving up and down, by changing ω and keeping α constant, varies the ringing frequency, but each train lasts for the same time, because the time is fixed by α.

Along the line $O D$ we have quite a different condition. We are varying both α and ω, while keeping α / ω constant. This ratio has zero dimensions, and gives us a line of constant "decay per cycle". For various reasons it is not expressed in quite this form. I have marked in the point $\omega_{0}=\left(\alpha^{2}+\omega^{2}\right)^{\frac{1}{2}}$, which for the $L C R$ circuit is, in fact,

$$
\omega_{0}=(1 / L C)^{\frac{1}{2}}
$$

The decrement factor, ζ, is defined as

$$
\zeta=\alpha / \omega_{0}
$$

This is expressed in more familiar terms for the $L C R$ circuit by writing $\alpha=R / 2 L$, so that

$$
\begin{aligned}
\zeta & =R / 2 \omega_{0} L \\
& =1 / 2 Q_{0}
\end{aligned}
$$

where Q_{0} is the well-known $\omega_{0} L / R$, commonly called Q.

Fig. 2. Features of a root.
Frequency in two dimensions - cont.
I began with the $L C R$ circuit because it has roots which are out in the open spaces of the diagram. Let us consider now the simpler case of a resistance and inductance in series. The impedance can be written down immediately as

$$
\begin{aligned}
Z & =R+j \omega L \\
& =L(R / L+j \omega)
\end{aligned}
$$

The "frequency" obtained by solving the differential equation

$$
L \frac{d I}{d t}=V
$$

and so on, which we went through in the February issue, is described by the term $\exp [-t /(L / R)]$. It gives us quite simply a form $\exp (-\alpha t)$ where $\alpha=R / L$, and no j
term at all. Figure 3 shows this root, on the negative part of the real axis. It is a very dull looking diagram indeed. The equation for Z, the impedance, is, as you see, very simple and is rather convenient for showing how,

Fig. 3. Root for an LR circuit.
in most circuits, we can avoid working through the differential equation. If we substitute p, or s, or λ, for $j \omega$ we arrive at the expression

$$
Z=R+p L
$$

and if $\boldsymbol{Z}=0$

$$
p=R / L
$$

Which symbol you use depends to some extent on the way you were brought up. There are, indeed, some subtle differences in definitions, but these are so subtle that if you need to understand them you would not be tackling that sort of problem unless you could understand them. This substitution makes writing down the equation, though not necessarily finding the roots, fairly easy. For the series $L C R$ circuit,

$$
\begin{aligned}
Z & =R+j \omega L+1 / j \omega C \\
& =\frac{1-\omega^{2} L C+j \omega C R}{j \omega C} \\
& =\frac{1}{p C}\left(1+p C R+p^{2} L C\right)
\end{aligned}
$$

and if $Z=0$

$$
p^{2} L C+p C R+1=0
$$

giving as we know,

$$
p=\frac{-C R \pm \sqrt{C^{2} R^{2}-4 L C}}{2 L C}
$$

There is also a slightly embarrassing term, which gives us an alternative solution, $p \rightarrow \infty$. It does not really matter which way

Fig. 4. A way of studying the $L C R$ circuit.
p goes off to infinity. A way of dodging this is to consider the circuit of Fig. 4. In this the current will be

$$
I=V_{1} / Z
$$

The voltage across the capacitance will be

$$
\begin{aligned}
V_{2} & =I / j \omega C \\
& =V_{1} \cdot \frac{j \omega C}{1-\omega^{2} L C+j \omega C R} \cdot \frac{1}{j \omega C}
\end{aligned}
$$

so that

$$
\frac{V_{1}}{V_{2}}=1+p C R+p^{2} L C
$$

By this conjuring trick I have got rid of a root which looked like being a nuisance. It will appear later that this term would, in some ways, have looked after itself, but we do not want to carry it around at this stage.

We have an equation for V_{1} / V_{2}, which we can write as

$$
\frac{V_{1}}{V_{2}}=\frac{1}{p_{1} p_{2}}\left(p-p_{1}\right)\left(p-p_{2}\right)
$$

where p_{1}, p_{2} are the two roots we have already found. In order to breathe some life into this let us look at one term by itself, and consider the factor $\left(p-p_{1}\right)$. We have seen that p_{1} is a term of the form $\left(-\alpha+j \omega_{1}\right)$, in which I am writing ω_{1} to show that it is a fixed value obtained from the actual values of L, C and R. The plus sign is arbitrary: if p_{1} has the plus sign, p_{2} will have the term $-j \omega_{1}$. The variable is p, or $j \omega$, which can have any value, although we are almost always concerned with the situation in which ω is positive and real. Consider the rather bare Fig. 5. This shows the root p_{1}

Fig. 5. One root and its effect for sinusoidal excitation.
at P_{1} which can be written either as $\left(-\alpha+j \omega_{1}\right)$ or as $\left(-\alpha, \omega_{1}\right)$ depending on whether you think in algebraic terms or trigonometric terms. The point p lies on the vertical axis, at $(O+j \omega)$. We have

$$
\begin{aligned}
O P=O+j \omega & =p \\
O P_{1}=-\alpha+j \omega_{1} & =p_{1} \\
\text { Now } \quad O P_{1}+P_{1} P & =O P
\end{aligned}
$$

$$
\text { so that } \quad P_{3} P=\left(p-p_{1}\right)
$$

The vector joining P_{1} to P represents the term $\left(p-p_{1}\right)$. For the $L C R$ circuit, however, we have a pair of roots, and these are plotted in Fig. 6. Since

$$
\begin{aligned}
& P_{1} P=\left(p-p_{1}\right) \text { and } \\
& P_{2} P=\left(p-p_{2}\right)
\end{aligned}
$$

we take the product, $P_{1} P \times P_{2} P$ to give us, apart from the constant, the ratio V_{1} / V_{2}. The constant, $1 / p_{1} p_{2}$, can be found from the diagram, because it is simply $1 / O P_{1} \cdot O P_{2}$.

Before going on any further with the meaning of Fig. 6 let us look at Fig. 7. Here we have

$$
\begin{aligned}
\frac{V_{1}}{V_{2}} & =1+j \omega \frac{L}{R}=\frac{L}{R}\left(\frac{R}{L}+j \omega\right) \\
& =\frac{L}{R}\left(p-p_{1}\right), \quad \text { where } p_{1}=-R / L
\end{aligned}
$$

Fig. 6. A pair of roots.

Fig. 7. The simple LR circuit, which has only one root.

This has only a single root, at the point ($-R / L, O$), on the negative real axis. The reader is left to draw the root diagram for himself. The situation with the $L C R$ circuit when $R^{2}>4 L / C$ is rather similar. This highly damped condition gives us, in our equation for the roots,

$$
p=-\frac{R}{2 L} \pm \sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}}
$$

in which the term under the square root sign is positive. We do not get a term in j. However, the term under the square root sign is always less than $R^{2} / 4 L^{2}$, if C is positive, and thus both p_{1} and p_{2} are negative. If we vary the value of C we get a rather interesting behaviour pattern. When C is very large indeed, the two roots are very near to $-R / L$ and O. These are the two points C_{1} and C_{2} in Fig. 8. As C is reduced,

Fig. 8. Locus of roots as C is varied.
the roots move inwards, to points like $C_{1}{ }^{\prime}$ and $C_{2}{ }^{\prime}$ until when $C=4 L / R^{2}$ they coalesce at the point $C^{\prime \prime},(-R / 2 L, O)$. It is here that the term under the square root is passing through zero to become negative for smaller values of C. The real part of p now remains constant, and for these smaller values of C we have a j term appearing. The roots head off along the lines $C^{\prime \prime} C_{1}^{\prime \prime}$, and $C^{\prime \prime} C_{2}^{\prime \prime}$,
remaining symmetrically spaced. There is no real significance in the arrows showing $C_{1}{ }^{\prime}$ moving round to $C_{1}{ }^{\prime \prime}$: when the roots coalesce you can't tell one from t'other. It is the lines $C_{1} C_{1}{ }^{\prime} C_{1}{ }^{\prime \prime}$ and $C_{2} C_{2}{ }^{\prime \prime} C_{2}{ }^{\prime \prime}$ which are the root loci.
An alternative way of moving the roots about is to vary the value of R while keeping L and C constant. If we begin by taking R very large indeed, the two roots are on the real axis at very nearly

$$
\left(-\frac{R}{2 L}+\frac{R}{2 L}-\delta\right) \rightarrow-\delta
$$

where δ is a small quantity, and

$$
-R / 4 L \rightarrow-\infty
$$

Reducing R towards the critical damping value brings the roots in towards $-R / 2 L$ as before. The appearance of the imaginary term, however, gives us roots at ($x \pm j y$), with

$$
\begin{aligned}
& x=-R / 2 L \\
& y=\left(\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

Notice that in taking the $(-1)^{\frac{1}{2}}$ outside the y bracket we have had to turn the expression round.

$$
\text { Now } x^{2}+y^{2}=1 / L C=\text { const } \text {. }
$$

This is the equation of a circle. The roots turn off the real axis in the paths shown in Fig. 9. When R falls to zero the roots reach

Fig. 9. Locus of roots as R is varied.
the imaginary axis at $\omega= \pm 1 /(L C)^{\frac{1}{4}}$; If R becomes negative the roots will penetrate into the right-hand side of the plane, in which the transient "ring" of the circuit grows steadily in amplitude. I do not think I shall have space to follow them there, at least not this month. Very often we try to get this class of system to straddle the imaginary axis, sitting, like the Liberal Party, on the fence until the iron has entered its heart. This is the steady state class-A oscillation condition, in which R is controlled by a thermistor or an a.g.c. circuit. We may, altematively, let the roots jump from side to side, in the oscillator circuits which use some clipping arrangement for maintaining the steady state.

All this discussion of the way in which the roots associated with a rather simple circuit move about as we change the element values can now be related to the result pictured in Fig. 6. The equation we use has

Fig. $10(a) \cdot \frac{V_{2}}{V_{1}}=\frac{p_{1} p_{2}}{\left(p-p_{1}\right)\left(p-p_{2}\right)}$ for various values of $I / 2 Q_{0}$
already been given :

$$
\frac{V_{1}}{V_{2}}=\frac{1}{p_{1} p_{2}}\left(p-p_{1}\right)\left(p-p_{2}\right)
$$

and $\left(p-p_{1}\right)=$ the length $P_{1} P$

$$
\left(p-p_{2}\right)=\text { the length } P_{2} P
$$

When P_{1} is very close to the imaginary axis the term $\left(p-p_{1}\right)$ will dominate the behaviour in the region around $\omega=1 /(L C)^{\ddagger}$. This is the high- Q situation, in which the resonance curve is symmetrical. As the Q is reduced, and P_{1} moves to the left, the contribution of the second root at P_{2} becomes more important and the response is no longer symmetrical. Indeed, the circuit is slowly transformed from tuned-circuit behaviour to low-pass filter behaviour. This is shown in Fig. 10, which gives a good idea of how, as the roots approach the axis, the response peak becomes the most important characteristic.

Most engineers who are designing equipment professionally are required to design to a specification, and most systems which can be related, sometimes in a rather roundabout way, to the second order network are specified in terms of frequency response. I do not think that, for practical design purposes, the root treatment is the most convenient. In operation, and this is particularly true of video systems and some mechanical systems, the transient response is really what matters, even though it is not such a tidy thing to put into a specification. Figure 11 shows the way in which the output varies with time when a unit step is applied to the input of our $L C R$ circuit.

I am not going to work through the mathematics, but will simply quote the results. The roots, just to remind you, are at

$$
-\alpha \pm j \omega_{1}
$$

in which ω_{1} is the diminished frequency,

$$
\begin{aligned}
& \omega_{1}=\left(\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}\right)^{ \pm}, \text {always less than } \\
& \omega_{0}=(1 / L C)^{ \pm}
\end{aligned}
$$

The time from the switch-on to the first peak is

$$
t_{p}=\pi / \omega
$$

Fig. 10(b) Roots corresponding to responses in 10(a).

Fig. J1. Response of second order circuit to a step input.

The size of the first peak, that is to say the value reached at t_{p}, is

$$
\exp -\left(\zeta \pi /\left(1-\zeta^{2}\right)^{t}\right)
$$

This depends only on

$$
\zeta=R / 2 \omega_{0} L=\alpha / \omega_{0}
$$

In the special case of $\zeta=0$ this has a value of 2 , for $\zeta=0.7,1.04$ and for $\zeta=0$, 1.00 .

When the system has a substantial ring the mechanical people look for this ring to decay to 5%, for the amplitude to lie between 0.95 and 1.05 . This will occur after a time t_{s} where

$$
t_{s}=3 / 5 \omega_{0}=6 L / R=3 / \alpha
$$

All this analysis of the $L C R$ circuit is really only of value because it relates a new technique to a well-known way of behaving.

The technique itself is useful when the system is too flexible for the simple algebraic treatment to be economical. The root locus technique, introduced by Evans for servomechanism analysis, really does use the roots. A servo system is simply a feedback amplifier, except that very often the feedback network has unity gain. For such a system the equation

$$
\mu_{f}=\mu /(1+\mu \beta)
$$

reduces to

$$
\mu_{f}=\mu /(1+\mu)
$$

Here μ is the forward open-loop gain and μ_{f} the gain when the feedback loop is connected. The problems all arise because μ is frequency-dependent and can be written, in general, as

$$
\mu=\frac{m(p)}{n(p)}
$$

where $m(p)$ and $n(p)$ are polynomials in frequency. Typically, if there is one capacitive coupling and one stray capacitance,

$$
\mu=\mu_{m}\left(\frac{j \omega \tau_{1}}{\left(1+j \omega \tau_{1}\right)\left(1+j \omega \tau_{2}\right)}\right)
$$

showing a $6 \mathrm{~dB} /$ octave tail off at low and high frequencies.
If we take a rather simpler system, which only rolls off at high frequencies,
or

$$
\begin{aligned}
& \mu=\mu_{m}\left(\frac{1}{1+j \omega \tau}\right) \\
& \mu=\mu_{m}\left(\frac{1}{1+p \tau}\right)
\end{aligned}
$$

with a root at $p=-1 / \tau$.
Now connect the feedback:

$$
\mu_{f}=\frac{\mu_{m}}{1+p \tau} /\left(1+\frac{\mu_{m}}{1+p \tau}\right)=\frac{\mu_{m}}{\left(1+\mu_{m}\right)+p \tau}
$$

The root is now at $p=-\tau /\left(1+\mu_{m}\right)$ and by altering μ_{m} we can move this root about. We are only moving it along the negative real axis, which is pretty dull, but still, it moves.

Two stages of this general kind give us

$$
\begin{aligned}
\mu & =\mu_{m} /\left(1+p \tau_{1}\right)\left(1+p \tau_{2}\right) \\
\mu_{S} & =\mu /(1+\mu) \\
& =\frac{\mu_{m}}{\mu_{m}+\left(1+p \tau_{1}\right)\left(1+p \tau_{2}\right)}
\end{aligned}
$$

and

We now look for the roots of

$$
\left(1+p \tau_{1}\right)\left(1+p \tau_{2}\right)+\mu_{m}=0
$$

Expanding

$$
\tau_{1} \tau_{2} p^{2}+\left(\tau_{1}+\tau_{2}\right) p+\left(1+\mu_{m}\right)=0
$$

Now, of course, there are two roots. For $\mu_{m}=0$ they are at $p=-\tau_{1},-\tau_{2}$. As μ_{m} is increased they begin to move towards the common value

$$
\frac{-\left(\tau_{2}+\tau_{2}\right)}{2 \tau_{1} \tau_{2}}
$$

and when

$$
4 \tau_{1} \tau_{2}\left(1+\mu_{m}\right)>\left(\tau_{1}+\tau_{2}\right)^{2}
$$

they acquire an imaginary component. These roots move in much the same way as the roots in Fig. 8 except that here we are varying the gain of an amplifier. The roots
stay safely in the left-hand half of the plane, so that the system is always, stable.

I am going to cheat a little here. As the roots are moving independently, I am going to start them off together. In the example of two roots this means that I lose the region where they are approaching each other along the real axis. With three roots the equation is then

$$
p^{3} \tau^{3}+3 p^{2} \tau^{2}+3 p \tau+\left(1+\mu_{m 1}\right)=0
$$

We are interested in the way the roots behave as we change μ_{m} because we fear, indeed in this example we know, that if μ_{m} is chosen incorrectly the system will be unstable. For the special case of $\mu_{m}=0$ the roots all lie at $p=-1 / \tau$, safely in the lefthand side of the plane, where transients die quietly away. The cubic equation has one real root and two roots which may be real or may be a complex conjugate pair, $\alpha \pm j \beta$. It is soluble by formula, but as a guide to the tricks which are employed for more complicated systems we can work rather differently. The first thing is to see what Routh's criterion can tell us. We tabulate the coefficients, like this:

$$
\begin{array}{ll}
\tau^{3} & 3 \tau \\
3 \tau^{2} & 1+\mu_{m}
\end{array}
$$

$$
\frac{9 \tau^{3}-\tau^{3}\left(1+\mu_{m}\right)}{3 \tau^{2}}
$$

The last term is $\left(a_{1} a_{2}-a_{0} a_{3}\right) / a_{1}$, where the original equation was

$$
a_{0} p_{3}+a_{1} p^{2}+a_{2} p+a_{3}=0
$$

If all the terms in the left-hand column have the same sign the system is stable. Now τ^{3} and $3 \tau^{2}$ are positive, so that

$$
9 \tau^{3}-\tau^{3}\left(1+\mu_{m}\right) \text { must be positive too. }
$$

For stability, $\mu_{m}<8$, or, to put it another way, if $\mu_{m}=8$ there must be a root on the imaginary axis. As $p=0$ is not a root, there must be a complex conjugate pair, $p= \pm j \omega$. The equation is now

$$
\tau^{3} p^{3}+3 \tau^{2} p^{2}+3 \tau p+9=0
$$

and the roots give us

$$
\begin{gathered}
\left(p-p_{0}\right)\left(p^{2}-p_{1}^{2}\right)=0 \\
p^{3}-p_{0} p^{2}-p_{1}^{2} p+p_{0} p_{1}^{2}=0
\end{gathered}
$$

compared with

$$
\text { Thus } \begin{array}{ll}
& p^{3}+(3 / \tau) p^{2}+\left(3 / \tau^{2}\right) p+9 / \tau^{3} \\
& p_{0}=-3 / \tau \\
& p_{1}=\sqrt{ }-3 / \tau=+j \sqrt{ } 3 / \tau
\end{array}
$$

This information enables us to sketch in the root locus of Fig. 12, which shows how the 3 roots diverge from the starting point at $\mu_{m}=0$. It can be seen that even with μ_{m} less than 8 the roots are getting rather near the axis, and we would expect a substantial overshoot. We need to follow the roots in detail. At this point I must quote from the preface to Bode, "Network Analysis and Feedback Amplifiers":
"Invincible fatigue set in before these chapters could be written."
Actually, space, not fatigue, is the problem. It seems more important to leave the construction of the locus patterns until, say, Christmas, and to remind the reader of the

Fig. 12. Movement of three roots.
physical realities. All this talk about roots is fine for the mathematicians, but what does it mean to the man who is slaving over a hot oscilloscope all day? A root is simply a normal frequency of the system, what comes naturally if you give it some energy to play with. The fact that the frequency defined in this way is not just the ω of $\sin \omega t$, but is the complex number ($\alpha+j \omega$) is the reminder that transients will either die away, in a passive circuit, or grow, in an unstable feedback system. If they grow, they go on growing, theoretically, for ever. Practically, the system equations are changed by one mechanism or another. Pure sine waves are special and, as every oscillator designer knows, cost extra.
1 began this article with words sung on the trails to the Far West : the appropriate ending would seem to be: "There's a long long trail awinding...."

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

June 1-4 New Horticultural Hall Inventions \& New Products Exhibition
(Business Conferences \& Exhibitions, Mercury House, Waterloo Rd, London S.E.1.)
June 9-11 Savoy Place Electrical Interference in Instrumentation (I.E.E., Savoy PI., London W.C.2.)

June 12 \& $13 \quad$ Waldorf Hotel
Professional Recording Equipment
(J. N. Borwick, Association of Professional Recording Studios, 47 Wattendon Road, Kenley, Surrey)

UXBRIDGE

June 30 -July 2
Brunel University
Mobile Radiocommunication Systems
(Soc. of Electronic and Radio Technicians, Faraday House, 8-10 Charing Cross Road, London W.C.2.)
OVERSEAS
June 2-5
Boulder
Precision Electromagnetic Measurements
(National Bureau of Standards, Boulder, Colorado)
June 8-10
International Conference on Communications (I.E.E.E., Suite 2210, 701 Welch Road, Palo Alto, California 94304)
June 18 \& 19
Minneapolis
Solid State Sensors
(R. S. Dyck. Fairchild Semiconductor, 4001 Miranda Ave., Palo Alto, California 94304)

'Skipthe integration and involvement bit. What's in it forme?

"We're glad you asked that question."
" When people say that, they mean they aren't."
"Not us. Definitely!"
"Give it to me again. Slowly."
"Electrosil and Miniature Electronic Components have teamed up. You know-integration, involvement, expansion. It's a natural process." "So is having a good dinner. I'm a components user. What do! get out of it?"
"A far wider range from Electrosil, for a start."

"And?"

"And all that's best about M.E.C.--their know-how on potentiometers and wirewound resistors-is now combined with all that is excellent about Electrosil-their manufacturing capacity, distributive size and leadership in the field of quality resistors. You'll get the same utterly dependable components. But ordering could be easier, despatch and delivery even quicker." "How about a concrete example?"
"All right. Take manufacturing capacity for a start. Improvements in line layout and production techniques have increased the yield on one product by more than 50% since the beginning of the year."
"Sounds impressive. But what about quality?"
"Electrosil have always put quality above everything. Ask any customer. Our new wirewound products get just the same critical examination that was standard practice at M.E.C."
"And the supply situation?"
"We did have difficulties in the early stages. After all, we had to train a completely new labour force. These problems are now completely overcome and all our factory people are well experienced and ready to meet all demands."
"All?"
"All!"
"How confident can you get! Just tell me what I can expect in the way of potentiometers."
"Well there are three basic families-rectilinear (multi-turn); T05 rotary (single turn); and ${ }^{\prime \prime}$ square (multi-turn); all manufactured to military standards."
"How about temperature range?"
"Minus 55° Centigrade to plus 150° on most products."
"Minus 55 to plus 150!"
"Guaranteed."
"Don't ring me. I'll ring you."
"When people say that they mean they won't."
"Not me. Definitely!"

Electrosil

have the experience

Open the BRIMAR Industrial Cathode Ray Tube catalogue and you will find just about the widest range of tubes in the business, one of which is likely to be a 'perfect fit' for your requirement. But, if you have something unusual in mind, talk it over with us. BRIMAR can provide the tube you need, either 'made to measure' or 'off the peg', whether it be for measuring instruments, picture monitors, radar, alphanumeric or graphical displays.
Through the unparalleled BRIMAR capability in chemistry, electron optics and vacuum physics the widest design diversity is offered, backed by a personalised customer service.
This service, provided by engineers with extensive
experience of the electronics industry covers advice on tube characteristics, operating conditions and associated components.
Tailored packaging and reliable delivery to meet production schedules are also part of the BRIMAR Service.
Want to know more about the BRIMAR range of: Industrial Cathode Ray Tubes? - send for our latest catalogue.

Thorn Radio Valves and Tubes Limited

7 Soho Square, London, WIV 6DN. Telephons: 01-4375233

Active Filters

11. More on the parallel-T network

by F. E. J. Girling* and E.F. Good*

Variable tuning with constant bandwidth

Since the balanced parallel-tee network has the short-circuit output currents of the phase-lag and phase-advance branches, I_{1} and I_{3}, always at a constant 180° phase difference, it follows that balance (zero transmission) may be obtained at a new frequency by varying only the relative amplitudes of I_{1} and I_{3}. This principle is employed in the circuit shown in Fig. 1(a), in which varying the fraction x applied to the phase-lag branch gives $\omega_{0} \propto \sqrt{x}$ and $q \propto \omega_{0}$, i.e. constant bandwidth. With the input at V_{1} tuned-circuit response is obtained, Fig. 1(b). Using only simple tran-
(a)

(b)

Fig. 1. Use of a potentiometer to give variable tuning with constant bandwidth.
sistor amplifiers the useful tuning range may be restricted to some 3 or 4:1. (Because of the increasing reactance of the capacitance of the input arm as frequency is reduced, there is a tendency with amplifiers of only moderate internal gain and input impedance for the peak gain to fall off as x is reduced.) - Royai Radar Establishmen.

With the input at V_{2} the response is a constant-bandwidth variable-frequency symmetrical notch response, with -3 dB points the same as for the corresponding tuned-circuit response. The same principle of variable tuning may be applied to circuits in the "virtual-earth" arrangement.

Third order systems

From any of the low-pass or high-pass configurations described an output may be taken from the junction of the two components in the damping branch (via a buffer amplifier if necessary). This will give a response $V_{\text {out }}{ }^{\prime}=V_{\text {out }} /(1+p T)$ for the lowpass connection, Fig. 2(a), or $V_{\text {out }}{ }^{\prime}=V_{\text {out }}$ $p T /(1+p T)$ for the high-pass, Fig. 2(b). In

Fig. 2. Use of damping branch to give 3rd-order response.
this way, for example, the additional simple lag (or lead) circuit that is required for oddorder Butterworth responses can be provided with the saving of a $C R$ network.

Using a parallel-tee network with $T_{1}=$ $T_{2}=T$ necessarily means that the time constant of the additional lag (or lead) is T also. This restriction can be removed by using a parallel-tee network in which component values are chosen to make $T_{1}=T / y$, $T_{2}=y T$ (so that $T=\sqrt{T_{1} T_{2}}$). Then

Fig. 3. Network in which $T_{1} \neq T_{2}$.
$V_{\text {oui }}{ }^{\prime}=V_{\text {ou }} /(1+p y T)$ for the low-pass connection shown in Fig. 3, or $V_{\text {out }}{ }^{\prime}=V_{\text {out }}$ $p y T /(1+p y T)$ for high-pass. It is easily shown however that the residual loss due to finite gain is now given by

$$
\begin{equation*}
\frac{1}{q_{r}}=\frac{2}{A}\left(y+\frac{1}{y}\right) \tag{1}
\end{equation*}
$$

and it is necessary to check that any required value of y does not impair the performance unacceptably (e.g. if $y>q$ the performance will be worse than that obtained from the lag-lead circuits described in Part 6).
(a)

Fig. 4. 3rd-order responses obtainable from active parallel-T system. Note linear power scale.

A third order low-pass system, Fig. 4(a), with a special characteristic is defined by the transfer function

$$
\begin{equation*}
G(p)=\frac{1-(1-1 / q) p^{2} T^{2}}{1+p T / q+p^{2} T^{2}} \cdot \frac{1}{1+p T} \tag{2}
\end{equation*}
$$

The frequency response is given by

$$
\begin{equation*}
|G(\omega)|=\left\{1+\frac{\left[(1-1 / q)-\omega^{2} T^{2}\right]^{2} \omega^{2} T^{2}}{\left[1-(1-1 / q) \omega^{2} T^{2}\right]}\right\}^{-\frac{1}{2}} \tag{3}
\end{equation*}
$$

which shows that $|G(\omega)|=1$ at a frequency $\omega_{1}=(1-1 / q)^{\frac{4}{2}} / T$, as well as at $\omega=0$, and that, as well as at $\omega=\infty,|G(\omega)|=0$ at the notch frequency $\omega_{\infty}=1 /(1-1 / q)^{4} T$. If it is required to build a filter to separate two signals so that one is passed without attenuation and the other rejected, this particular response will do this with the minimum value of q. If the signal to be rejected is the higher of the two frequencies a low-pass filter is used, and tuned so that ω_{∞} is at this signal frequency and ω_{1} is at the frequency of the signal to be transmitted. These requirements are satisfied by

$$
\begin{align*}
T & =1 / \sqrt{\omega_{1} \omega_{\infty}} \tag{4}\\
\frac{1}{q} & =1-\frac{\omega_{1}}{\omega_{\infty}} \tag{5}
\end{align*}
$$

For the opposite requirement the corres-
ponding high-pass response is used and the positions of ω_{1} and ω_{∞} are interchanged. It will be noted that the low-pass and highpass responses cross over at the half power points, and that they are complementary on a power basis $\left(V^{2}\right)$, Fig. 4(b).

Analysis of the parallel-T network

Consider I_{1} and I_{3}, the short-circuit output currents of the tees, Fig. 5. In the absence of C_{2} the resistors R^{\prime} and $R^{\prime \prime}$ form a potential divider, and the voltage at their junction would be $V_{1} R^{\prime} /\left(R^{\prime}+R^{\prime \prime}\right)$. When C_{2} is present this voltage falls at higher frequencies, being modified by a factor which is the transfer function for a $C R$ lag network, $1 /\left(1+p T_{2}\right)$, where T_{2} is the time constant of a network consisting of C_{2}, R^{\prime}, and $R^{\prime \prime}$, all in parallel, as equn. (2), Part 10. Consequently I_{1}, which is the current through R^{\prime}, is given by

$$
\begin{equation*}
I_{1}=\frac{V_{1}}{R^{\prime}+R^{\prime \prime}} \times \frac{1}{1+p T_{2}} \tag{6}
\end{equation*}
$$

Fig. 5. General parallel-T network.
(d)

(c)

(b)

Fig. 6. Phase and amplitude plots of the short-circuit output currents of the two tees for constant input voltage.

$$
\begin{equation*}
=\frac{V_{1}}{R\left(1+p T_{2}\right)} \text {, if } R^{\prime}+R^{\prime \prime}=R . \tag{7}
\end{equation*}
$$

For constant V_{1}, therefore, the amplitude and phase of I_{1} vary with frequency as shown in Figs. 6(a) and (b).

Similarly in the absence of $\boldsymbol{R}_{\mathbf{2}}$ the capacitors C^{\prime} and $C^{\prime \prime}$ form a potential divider, and the voltage at their junction would be $V_{1} C^{\prime \prime} /\left(C^{\prime}+C^{\prime \prime}\right)$. When R_{2} is present the voltage falls of at lower frequencies, being modified by a factor which is the transfer function of a $C R$ lead network, $p T_{2}{ }^{\prime} /$ ($1+p T_{2}{ }^{\prime}$), where $T_{2}{ }^{\prime}$ is the constant of a network consisting of R_{2}, C^{\prime}, and $C^{\prime \prime}$, all in parallel, equn. (3), Part 10. Consequently I_{3}, the current through C^{\prime}, is given by

$$
\begin{equation*}
I_{3}=\frac{V_{1} C^{\prime \prime}}{C^{\prime}+C^{\prime \prime}} \times \frac{p C^{\prime} p T_{2}^{\prime}}{1+p T_{2}^{\prime}} \tag{8}
\end{equation*}
$$

which, by substitution from equn. (4), Part 10, becomes

$$
\begin{equation*}
I_{3}=\frac{V_{1}}{R} \times \frac{p^{2} T_{1} T_{2}}{1+p T_{2}^{\prime}} \tag{9}
\end{equation*}
$$

For constant V_{1}, therefore, the amplitude and phase of I_{3} would vary with frequency as shown in Figs. 6(c) and (d), curves (1) and (2) corresponding to $T_{1}<T_{2}^{\prime}$ and $T_{1}>T_{2}{ }^{\prime}$ respectively. It will be noted that although the amplitude changes with change of T_{1} the phase is unaffected.

By making the substitution $p=j \omega$, the frequency-dependent factors of the expressions for I_{1} and I_{3} become

$$
\frac{1}{1+j \omega T_{2}} \text { and } \frac{(j \omega)^{2} T_{1} T_{2}^{\prime}}{1+j \omega T_{2}^{\prime}}
$$

When $T_{2}=T_{2}^{\prime}$ these two factors differ only in the numerators, and the j^{2} in the second compared with no j in the first means that then I_{3} has a constant 180° phase advance on I_{1} (i.e. at all frequencies). In other words: when $T_{2}=T_{2}$ the corner frequencies for the amplitude curves in Figs. 6(a) and (c) are the same, and the two phase curves, Figs. 6(b) and (d), which are the same shape, lie directly one above the other and 180° apart. Consequently, where the amplitudes of I_{1} and I_{3} are equal, and a look at the amplitude curves shows that there must always be such a frequency, the net output current is zero.

Thus the condition for a null is

$$
\begin{equation*}
T_{2}=T_{2}^{\prime} \tag{10}
\end{equation*}
$$

and, if this is satisfied, the frequency of the null, ω_{0}, is given by equating $\left|I_{1}\right|$ and $\left|I_{3}\right|$, obtained from equns. (7) and (8) by substituting $p=j \omega$,

$$
\begin{equation*}
\omega_{0}=1 / \sqrt{ }\left(T_{1} T_{2}\right) \tag{11}
\end{equation*}
$$

When the network has the commonly used component values which make $T_{1}=$ $T_{2}=T$,
and

$$
\begin{equation*}
I_{1}=\frac{V_{1}}{R} \times \frac{1}{1+p T} \tag{12}
\end{equation*}
$$

Whence

$$
\begin{equation*}
\omega_{0}=1 / T \tag{13}
\end{equation*}
$$

and at the null frequency I_{1} is 45° lagging with respect to V_{1} and $I_{3} 135^{\circ}$ leading. The phase and amplitude plots are shown in Fig. 7.

Fig. 7. Phase and amplitude plots when $T_{2}^{\prime}=T_{2}$.

Fig. 8. Plot of equn. (19).
To find the open-circuit output voltage, the short-circuit output current may be multiplied by the output impedance (the impedance seen by looking in at the output terminals with the input shorted). For the symmetrical network shown in Fig. 2, Part 10 , this is easily found and is

$$
\begin{equation*}
Z_{\text {out }}=\frac{R(1+p T)}{1+4 p T+p_{2} T_{2}} \tag{15}
\end{equation*}
$$

Consequently the open-circuit output voltage, $\left(I_{1}+I_{2}\right) Z_{\text {our }}$, is obtained by substituting from equns. (12) and (13) as

$$
\begin{equation*}
\frac{V_{0}}{V_{1}}=\frac{1+p^{2} T^{2}}{1+4 p T+p^{2} T^{2}} \tag{16}
\end{equation*}
$$

For the general case, Fig. 1, Part 10,

$$
\begin{equation*}
Z_{o u t}=\frac{R\left(1+p T_{2}\right)}{1+p\left(T_{1} / b^{\prime}+T_{2} / b\right)+p^{2} T_{1} T_{2}} \tag{17}
\end{equation*}
$$

where $b=R^{\prime} /\left(R^{\prime}+R^{\prime \prime}\right)$ and $b^{\prime}=C^{\prime} /\left(C^{\prime}+C^{\prime \prime}\right)$.
The transfer function may then be found as above, using equns. (7) and (8), and the Q factor obtained,

$$
\begin{equation*}
\frac{1}{q_{0}}=\frac{1}{\sqrt{\left(b b^{\prime}\right)}}\left\{\left(\frac{b T_{1}}{b^{\prime} T_{2}}\right)^{\frac{t}{2}}+\left(\frac{b^{\prime} T_{2}}{b T_{1}}\right)^{\frac{1}{2}}\right\} \tag{18}
\end{equation*}
$$

Dependence of q_{0} on the ratio T_{1} / T_{2} With an adequate margin of loop gain, the value of q is not much affected by small
changes to the value of q_{0}. Advantage may be taken of this when selecting components to satisfy a design value for T. The expression for q_{0}, equn. (18), can be written $1 / q_{0}$ $=Y / \sqrt{b} b^{\prime}$, where Y is of the form

$$
\begin{equation*}
Y=X^{\frac{1}{2}}+1 / X^{\frac{1}{2}} \tag{19}
\end{equation*}
$$

Maximum value of q_{0} (for any particular values of b and b^{\prime}) is obtained when Y has minimum value, which is $Y=2$ when $X=1$. But Fig. 8 shows that there can be appreciable latitude in the value of X without much increase in Y and, hence, decrease in q_{0}. Little is lost provided that X is kept within the bounds, say,

$$
\begin{equation*}
\frac{1}{2}<X<2 \tag{20}
\end{equation*}
$$

(when $b=b^{\prime}, X=T_{1} / T_{2}$).

The eight-component parallel-T network

For experimental purposes it is worth noting

(a)

$$
\begin{aligned}
& T=\sqrt{C^{\prime} R^{\prime} C^{\prime \prime} R^{\prime \prime}} \\
& R_{d}=q \sqrt{R^{\prime} R^{\prime \prime}}\left(\sqrt{\frac{C^{\prime}}{C^{\prime \prime}}}+\sqrt{\frac{C^{\prime \prime}}{C^{\prime}}}\right) \\
& C_{d}=\frac{\sqrt{C^{\prime} C^{\prime \prime}}}{q} \cdot \frac{1}{\left(\sqrt{\frac{R^{\prime \prime}}{R^{\prime \prime}}+\sqrt{\frac{R^{\prime \prime}}{R}}}\right)}
\end{aligned}
$$

Fig. 9. Balanced parallel-T network constructed from matched pairs of components.

Fig. 10. Particular case of Fig. 9.

Fig. 11. Parallel-T selective amplifier.
that a parallel-tee network may be built using eight components, arranged as in Fig. 9, made up of two pairs of matched resistors and two pairs of matched capacitors, and that it will automatically satisfy the necessary condition for balance. This is evidently so, since both T_{2} and $T_{2}{ }^{\prime}$ are now formed by a parallel combination of resistors R^{\prime} and $R^{\prime \prime}$ with a parallel combination of capacitors C^{\prime} and $C^{\prime \prime}$, i.e.

$$
\begin{equation*}
T_{2}=T_{2}{ }^{\prime}=\frac{R^{\prime} R^{\prime \prime}\left(C^{\prime}+C^{\prime \prime}\right)}{R^{\prime}+R^{\prime \prime}} \tag{21}
\end{equation*}
$$

T_{1}, defined in the same manner as for equn. (4), Part 10 , is now given by

$$
\begin{equation*}
T_{1}=\frac{C^{\prime} C^{\prime \prime}\left(R^{\prime}+R^{\prime \prime}\right)}{C^{\prime}+C^{\prime \prime}} \tag{22}
\end{equation*}
$$

and, therefore

$$
\begin{equation*}
T=\sqrt{T_{1} T_{2}}=\sqrt{C^{\prime} R^{\prime} C^{\prime \prime} R^{\prime \prime}} \tag{23}
\end{equation*}
$$

which gives the possibility of meeting a design value of T by manipulation of the values of four independent variables. It is, however, necessary to check that the resulting value of q_{0} is satisfactory. A quick answer can be obtained by putting $\boldsymbol{k}_{1}=$ $R^{\prime} / R^{\prime \prime}$ and $k_{2}=C^{\prime \prime} / C^{\prime}$, and substituting in the equation

$$
\begin{equation*}
\frac{1}{q_{0}}=\frac{2+k_{1}+k_{2}}{\sqrt{k_{1} k_{2}}} \tag{24}
\end{equation*}
$$

For the best result the components should be positioned to make both k_{1} and $k_{2}>1$.
The values of the components in the corresponding damping branch are shown in Fig. 9(b)
A particular case of the eight component parallel-tee network, Fig. 10, uses four equal resistors and four equal capacitors, i.e. $R^{\prime}=R^{\prime \prime}=R$ and $C^{\prime} \cong C^{\prime \prime}=C$, giving $T=C R$ and $q_{0}=\frac{1}{4}$. To reduce the effect of scatter in the values of the components, they should be grouped in pairs of most nearly equal values and disposed as in Fig. 9(a).

The advantage of the eight component network is that simple bridge methods may be used to select, or make up, matched pairs of components. This takes care of the most important requirement that T_{2} should equal $T_{2}{ }^{\prime}$. However if the absolute values are too much in error, some adjustment may be needed to $T\left(=\sqrt{T_{1}} T_{2}\right)$. Small adjustments can be made to T, without affecting the balance $T_{2}=T_{2}{ }^{\prime}$, by making equal incremental adjustments to both components of any pair of components.

The parallel-T filter considered as a 3rd-order loop

The filter shown in solid lines in Fig. 11 gives, when the circuit values are correct, tuned-circuit response with infinite Q. If it is redrawn as in Fig. 12, it can be seen that there is a loop containing a modified inte grator and a simple lag. The frequencydependent part of the transfer function of the modified integrator (output voltage/input current) is of the form $\left(1+p T_{2}\right) / p^{2} T_{2}{ }^{2}$, and for the simple lag the corresponding relevant function (short-circuit output current/input voltage) is $1 /\left(1+p T_{1}\right)$. In terms of the standard diagram, Fig. 13, therefore,

Fig. 12. Circuit of Fig. 11 re-drawn.

Fig. 13. Standard diagram of feedback loop.

Fig. 14. Phase and asymptotic gain diagrams fer the two portions of the loop.

Fig. 15. Nyquist diagrams or loci of $\mu \beta$.

$$
\begin{equation*}
\mu \beta=k_{1} k_{2} \frac{1+p T_{2}}{p^{2} T_{2}^{2}} \cdot \frac{1}{1+p T_{1}} . \tag{25}
\end{equation*}
$$

When $T_{1}=T_{2}=T$, this reduces to $k_{1} k_{2} / p^{2} T^{2}$, the same form as for two integrators in cascade, corresponding to a constant phase shift of 180°. As may be seen from the phase diagrams, Fig. 14, when $T_{1}>T_{2}, \omega_{1}<\omega_{2}$ and the phase shift at frequencies between 0 and ∞ is greater than 180° : the system is therefore unstable. When $T_{2}>T_{1}, \omega_{2}<\omega_{1}$ and the phase shift at frequencies between 0 and ∞ is less than 180°. The Nyquist plot therefore passes the $-1, j 0$ point on the safe side, Fig. 15 , and the system is stable. The damping branch when connected introduces phase advance, making the loop stable even when $T_{1}=T_{2}$ and the shape of the Nyquist plot becomes approximately as shown in the diagram.

Modern Direct Voltage Calibration System

A look at a precision commercial measuring equipment

by H. Stern, B.Sc.

Today we have available transportable instruments readable to a precision previously only attainable in the standards room. This improved accuracy brings with it the necessity of checking the instruments concerned regularly to maintain the claimed performance. The classical methods of checking voltmeters are, of course, still available, but to secure the highest accuracy considerable skill and time are necessary. In consequence, new techniques, which have been derived from the classical ones and which allow rapid re-calibration by persons other than a standards engineer, are being developed. One such approach is described in this article.

Voltage calibrator

The heart of any voltmeter calibration system is a stable voltage source-a voltage calibrator. Basically this is a very stable and accurately calibrated variable power unit. To cover the range of most voltage measurements it needs to go up to 1100 V . It must be easily varied over its range and
ideally should incorporate means of protecting both itself and the voltmeter on test from inadvertent damage.

A typical high grade voltage calibrator will have a calibration accuracy $\pm 0.002 \%$ plus a small "floor" of between $10 \mu \mathrm{~V}$ and $40 \mu \mathrm{~V}$. The stability of the unit, with regard to mains and load variations, must be of a higher order than this accuracy. The basic voltage control circuit (Fig. 1), constitutes a series regulator controlling the output from an unregulated d.c. supply. The error amplifier in combination with the series pass element (the section in the shaded portion) can be regarded as an operational amplifier, the gain of which is determined by R_{a} and R_{b} the junction of R_{a} and R_{b} is the summing junction. $E_{r e f}$ is the input voltage to the amplifier so that the output $E_{\text {out }}$ will be $\left(E_{\text {ref }} R_{a}\right) / R_{b}{ }^{1,2}$. Thus these three elements determine the output voltage from the calibrator and on them depends the stability of the output. In practice $E_{\text {ref }}$ is constant while R_{a} and R_{b} can be varied. R_{a} determines the precise value of $E_{\text {out }}$ while R_{b} determines the range.

The accuracy and stability of the reference voltage is vital to the performance of

Fig. 1 (left). Voltage control block diagram -voltage calibrator.

Complete calibration system.
the calibrator. A zener diode is used as the reference element and is housed in a proportionally controlled oven. The żener controlled voltage is fed via the range resistor to the summing junction.
R_{a} consists of sets of resistors, one set per decade, in cascade, so that the total value is determined by the settings of all the decades. Fig. 2 shows, in simplified form, one decade. All resistors in the decade have the same value and the value of resistance selected by S_{10} is changed on alternate settings only. $S_{1 b}$ brings R_{1} into circuit on the odd settings of the decade. This reduces the number of resistors required per decade and the number of adjustments needed when setting up. The final value can be set by means of a small variable resistor (typically 0.1% of the total value of the

Fig. 2. Typical decade-voltage control feedback resistor.
particular section), in series with the major fixed resistor. Since the variable component is such a small proportion of the whole, the effect of its stability is negligible as a component of the instrument performance specification.

Pre-regulator: When a series regulator is used at low output settings a large portion of the power supplied from the raw d.c. supply must be dissipated in the series element. The efficiency of the device is then low, and heat, affecting both reliability and drift, is generated in this element. This can be eliminated by use of a pre-regulator (Fig. 3).

Fig. 3. Pre-regulator.
An oscillator shunts the series pass element and provides a control voltage varying with the voltage across the pass element. This control voltage is coupled via T_{1} to the pre-regulator, in series with the mains transformer T_{2}. The pre-regulator switches off the supply to T_{2} for a portion of the mains cycle depending on the voltage across the pass element; the greater this voltage the lower the duty cycle of the supply to T_{2}. Thus the energy supplied to T_{2} and hence the raw d.c. supply voltage is reduced as the voltage across the series pass element tends to rise.

Remote sensing: One possible source of error is the voltage drop in the leads to the voltmeter on test. Even small loads and short leads may have appreciable effect when working at this high accuracy. For example, the drop in leads with a resistance of 30 milliohms at 1 mA will be $30 \mu \mathrm{~V}$ which may be equal to the calibrator accuracy when working on the IV setting.

The problem is easily avoided by using a four wire system, removing the links shown in Fig. 1 and transferring their junction to the voltmeter on test.

Protection: A high voltage unit capable of such high accuracy needs protection against damage to itself and to the meter on test. Three different protective devices are employed: a variable current limiter, a current trip and a variable voltage trip.

The current limiter sets the maximum current drawn by the load so as to protect the voltmeter on test. Should the pre-set level be exceeded the calibrator acts as a constant current device and a panel warning light is illuminated. Should the
limiter, for any reason, fail to operate and a severe overload, likely to damage the calibrator, occur, the current trip automatically switches the calibrator to a stand-by condition.

The load current is sensed by R_{c} in the positive output lead (Fig. 1) and the resultant voltage fed to the current limiter (Fig. 4). $V R_{1}$ is the current limiter adjustment, setting the base-emitter voltage of Tr_{1}, which is normally non-conducting. When over-current conditions occur, Tr_{1} is rendered conducting by the voltage sensed across R_{c} and causes $T r_{2}$ and Tr_{3} to conduct. Tr_{3} causes Tr_{4} to draw current from the error amplifier bypassing part of the sampling resistor chain current. This causes a drop in the calibrator output voltage limiting the output current. Simultaneously the output from Tr_{3} switches on the warning lamp circuit.

The current trip also uses R_{c} to sense the output current. In the case of severe current overload, this voltage switches over a monostable circuit which operates a relay de-energising the high voltage transformer. After removing the overload the calibrator may be restored to normal operation.

The purpose of the voltage trip is to protect the voltmeter on test from excessive voltage. Should a pre-set voltage be exceeded the high voltage is removed in a similar way to the current trip

Fig. 4. Simplified current limit circuit.
operation. The variable control on the voltage trip circuit is provided by controlling a reference bias on a transistor which is normally non-conducting. If the main output rises sufficiently high the transistor conducts to operate the trip circuitry.

Checking calibration: However stable a calibrator may be it is essential that its calibration should be checked regularly The unit should be, as far as possible, selfchecking and any equipment needed to check it should be readily available. The particular calibrator under discussion can be checked using a null detector (preferably with high input resistance), a standard cell and a stable voltmeter with adequate resolution.

Fig. 5. Voltage calibrator and null detector used as (a) high resolution differential voltmeter (b) power standard cell.

It has already been noted that the sample decade (Fig. 2) has a " 10 ' position, that is to say a 10% over-range. To distinguish this from the normal 10 using the 1 on the next decade up, it will, in the following, be designated X . This over range facility means that there are two ways to arrive at most voltages, e.g. $20=10+X$, $30=20+\mathrm{X}$, etc. The division accuracy is therefore checked by setting up each voltage in two ways, monitoring them using the voltmeter mentioned above and then adjusting one to equal the other by means of the pre-set controls. Only the even values are adjusted, since the design of the resistor chain implies that adjusting these resistors automatically sets the odd values.

There remains the necessity of checking the absolute accuracy of the calibrator. A standard cell and a high resistance null detector are connected as show in Fig. 5(b). The calibrator on its lowest range (10 V) is set to the nominal standard cell e.m.f. and the reference circuit on the calibrator adjusted to give a null indication against the standard cell. Then, using a voltmeter as previously, the upper ranges may, in turn, be checked against the over-range voltages on the next lowest range, e.g. IIV on the 100 V range against 11 V on the 10 V range, and the appropriate range divider adjusted.
This procedure allows the accuracy of the calibrator to be referred back to a standard cell which can be certified by the appropriate national laboratory (e.g. N.P.L.) while the equipment, apart from the cell, stays in the user's laboratory.

Null detector

Many measurements involve nulling a known voltage or resistor against an unknown. For this purpose an electronic null detector is of great value since it can combine hugh sensitivity with high input resistance.

The null detector consists basically of high sensitivity transistor voltmeter with a centre zero.

Apart from being used independently, it may be connected to the calibrator to form a high resolution differential voltmeter
(Fig. 5a). An extension on this arrangement is the "power standard cell" (Fig. 5b) wherein a voltage equal to that of the standard cell, but of low source resistance is obtained. This is achieved by nulling the output of the calibrator against the standard cell and then using the calibrator output as the voltage source. Variations in the calibrator voltage are continuously monitored by the null detector. The high input resistance of the null detector protects the standard cell.

Reference Divider

The calibrator described may be used on its own; this divider complements it and serves as an aid to checking the calibrator output. A simplified circuit diagram is shown in Fig. 6. The upper portion is a simple voltage divider while the lower, associated with the standard cell voltage, is a Kelvin-Varley divider. The output from this K-V divider is fed to a standard cell in series with a high resistance null detector. The ratios are such that, when a nominal voltage is fed directly into any higher tap, the voltage across the 'standard cell' portion should be equal to that cell e.m.f. as set up on the K-V divider and can be compared with the cell e.m.f.

Normally, the input is fed in via the overvoltage circuit, the two adjustment rheostats and the input voltage switch. The input voltage can then be nulled against the standard cell either by means of the two adjustment rheostats or at the source. In either case a slightly higher voltage than the nominal input voltage at the divider will be required to compensate for the drop in the rheostats and the protection circuit.

The unit can now be used as a voltmeter calibrator; a suitable voltage is fed in and the output from this and lower taps used to check the cardinal points on the voltmeter. If the meter draws current when connected to a lower tap, the standardisation procedure must be performed with the

Fig. 7. Kelvin-Varley divider-basic configuration.
voltmeter in circuit, to allow for the voltage drop in the intermediate section of the divider.

The divider may also be used to check power supply or voltage calibrator output voltages. The input voltage is fed to the 'output' connections to avoid voltage drop in the rheostats and protection circuit. Care must be taken to avoid overloading the divider in these circumstances. The power unit output is adjusted by nulling against the standard cell.

This procedure forms part of the more detailed calibration for the voltage cali- -simplified circuit.

brator mentioned earlier. Its advantage is that all ranges on the calibrator are checked directly against the standard cell and a greater accuracy may be achieved. Moreover, the checks can be performed at a variety of voltages including the full scale value on any range of the calibrator.

Resistive ratio standard Kelvin-Varley divider

This unit serves a variety of purposes, including that of providing a standard against which to check the reference divider. Because ratios are unitless quantities they may be set up and checked without recourse to certification by outside bodies. This makes a ratio device a very useful tool in the standards laboratory.

The most widely used types of ratio standard are the universal ratio set and the Kelvin-Varley divider. When used for resistance measurements with conventional galvanometers the former is more responsive at low values of resistance, while the K-V divider has advantages at high values. However, if a high input resistance null detector is employed the K-V divider can be used over a wider range than the universal resistance set and, because of its higher resistance (between 10 and $100 \mathrm{k} \Omega$ compared with $2 \mathrm{k} \Omega$ for the U.R.S.), can handle higher voltages (1 kV compared with about 50 V). It is also less complex and therefore less expensive.

Fig. 7 shows the basic K-V divider. Each decade, except for the lowest, consists of eleven equal resistors and the total resistance looking back into successive decades is equal to the value of two of the resistors in the preceding decade. Thus, the first decade contains eleven $10 \mathrm{k} \Omega$ resistors and the next decade has a total
resistance of $20 \mathrm{~h} \Omega$. (At first sight it appears to be $22 \mathrm{k} \Omega$-but read on.)

A pair of switches shunts each decade across two adjacent resistors in the previous decade, so halving their effective value. Thus the resistance between the high and low input terminals in Fig. 7 is $100 \mathrm{k} \Omega$. Similarly, the next decade has a total resistance of $20 \mathrm{k} \Omega$ instead of $22 \mathrm{k} \Omega$ because of the shunting effect of the third decade. And so on down the chain. The last decade contains only ten resistors. The load on the output should have a high resistance compared with this decade if errors are not to occur. The input resistance of the divider will then be constant at all settings.

Although only four decades are illustrated, it is possible to cascade a large number if desired. The divider used in the system under discussion has seven decades.

If the simple circuit of Fig. 7 was used for a seven decade unit the value of each resistor in the last decade would be 0.64Ω. This is inconveniently low, since wiring and switch resistance can have a serious effect on accuracy. Using a higher set of values in the top decade would result in an excessive value there. The problem is overcome by using higher values for the resistors in lower decades and then shunting the whole decade with a resistor to bring the total resistance, looking back into it, down to the correct value. For example, $1 \mathrm{k} \Omega$ resistors are used in the three lowest decades and each decade is shunted by a $2.5 \mathrm{k} \Omega$ resistor to bring its total resistance down to $2 \mathrm{k} \Omega$.

There remains the problem of checking and re-setting the division accuracy of the divider. The most important resistors are those in the highest decades and each

Fig. 8. Linearizing Kelvin-Varley divider.

Fig. 9. Tracing measurement to the national standard of voltage.
resistor in the top three decades may be adjusted by means of a small rheostat in series with it. The value of the rheostat is sufficiently small for any instabilities not to affect the overall performance.

To set up the divider we adjust the appropriate resistors in each of the three principal decades to equality with one another and adjust the shunt resistors on the second to fourth decades to render the resistance of the appropriate decade equal to two of the resistors in the preceding decade. Adjustment of individual resistors in the four lowest decades is not needed since the effects of normal variations in their values is insignificant. This procedure is facilitated by turning the appropriate section of the divider into a Wheatstone bridge (Fig. 8a). R_{1} is the lowest resistor in the decade under test, R_{A} and R_{C} are extra resistors used only for this purpose. The bridge is balanced using R_{A}, then R_{1} is replaced by R_{2}, the next resistor in the decade, and the bridge re-balanced by adjusting R_{2}. The process is repeated up the decade, adjusting R_{3} to $R_{1 i}$ in turn. The result is that each resistor in the chain has been adjusted to equality with R_{1}. Similarly with the next two decades. To adjust the shunt resistors the circuit is slightly rearranged (Fig. 8b) and, without altering the bridge balance control, the shunt resistor for the appropriate decade is adjusted so that the parallel combination of R_{1} and R_{2}, and subsequent decades is made equal in value to R_{1}.

The K-V divider has several applications; e.g. by dividing down an unknown voltage the unknown may be compared with a standard cell as with the reference divider, but without the unknown voltage needing to correspond to a cardinal point. In conjunction with a standard resistance, the $\mathrm{K}-\mathrm{V}$ divider may be built into a bridge, the divider forming two arms, to allow accurate resistance measurements to be performed.

Particularly important is its use to check the division accuracy of the reference divider. The reference divider and the K-V divider are connected into a bridge circuit, each forming two arms of the bridge. Both dividers are set to the same nominal ratio
and the appropriate adjustments made on the reference divider to balance the bridge. One other item which facilitates this process is a lead compensator.

The complete system

The units described together form a complete calibration system which, apart from the standard cell, can be checked and adjusted in-house to give accurate voltage and resistance ratio measurements traceable to the national standards. Fig. 9 illustrates the route through which the voltage standard's output can be traced to the standard cell which, in turn, can be checked by the national laboratory against their standards. Although the system reduces considerably the skill needed care must be taken to avoid errors due to thermal e.m.fs, (for example by using special interconnecting leads) and large ambient temperature variations. Last, but not least, care needs to be taken with earth connections, ${ }^{3}$ so as to avoid anomalies due to common mode interference.

Acknowledgment

I am grateful to Fluke International Corporation for permission to publish this article.

REFERENCES

1. Clayton, G.B., "Operational Amplifiers", Wireless World, February 1969, p. 54.
2. Burr-Brown Research Corporation, "Handbook and Catalogue of Operational Amplifiers 1969".
3. Stern, H., "Digital Voltmeter Techniques", Wireless World, November 1967, p. 518.

New Books

Prineiples of Pulse Code Modulation, by K. W. Cattermole, aims "to give a clear exposition of the principles and properties that are essential to a full understanding of the mechanism and quantitative appraisal of the performance of p.c.m." Mathematical complexity has been avoided and both physical explanation and links with the general theory of signal presentation are given. The discussion of quantizing includes, besides the elementary theory, spectral distribution, optimization, prediction and the effect of irregularities. The section on coding exhibits the diversity of mechanisms. The author was recently appointed Professor of Telecommunication Systems at the University of Essex, in 1968. Pp. 447 including index. 182 illustrations. Price 95s in U.K. Iliffe Books, Butterworth \& Co., 88 Kingsway, London, W.C. 2 .
20. Solid State Projects for the Home, by R. M. Marston, includes circuits for motor speed control, photographic timing, and metal detection. Besides silicon planar bipolar transistors the circuits employ s.c.rs, triacs, i.cs. and unijunction and field effect transistors. Helpful constructional comments are made and detailed component lists given. Pp. 105 and 54 illustrations. Price 25 s for hard back and 18 s for soft. Iliffe Books, Butterworth \& Co., 88 Kingsway, London, W.C.2.

Circuit Ideas

Generating fast complementary pulses

The circuit of Fig. 1 provides equal amplitude positive and negative pulses. The control voltage has no critical level. The zener diode provides a path for the current created by generators Tr_{3} and Tr_{4}. Poles a and b of the so formed unearthed source can be earthed by $T r_{1}$ and $T r_{2}$, provided that the absolute value of the potential at the emitters of Tr_{3} and $T r_{4}$ is greater than the zener voltage. When the input voltage is negative $T r_{2}$ is saturated and b is earthed. When the control voltage reverses polarity $T r_{1}$ saturates and a is earthed. With the collector currents of Tr_{3} and Tr_{4} made equal (by adjusting $V R_{1}$) the only current flowing through the saturated transistor is the current taken from the output. With a 5.6 V zener diode and an offset of under 1 mV for $T r_{1}$ and $T r_{2}$ the output pulses are equal to within 0.02%. Greater accuracy can be attained using a higher voltage zener and with transistors having a smaller
offset voltage. Fig. 2 shows the rise and fall time of the pulses at the outputs when the input voltage is $\pm 4 \mathrm{~V}$.
A. Ivanov,

Sofia,
Bulgaria.

Triangular waveform generator

$T r_{1}$ is a switching transistor which, during the time it is cut off due to the gating waveform going negative, allows the current to flow into $C(0.33 \mu \mathrm{~F})$ from the positive rail through the diode and $22 \mathrm{k} \Omega$. The collector load of $100 \mathrm{k} \Omega$ adds to the resistance of the cut-off stage. The voltage rise across the capacitor is linearized in the conventional bootstrap manner by means of the emitter follower $T R_{2}$ and the 'floating battery' of $100 \mu \mathrm{~F}$. The diode is reverse biased due to this. When the gating waveform goes positive $T r_{1}$ saturates, allowing the charged

Fig. 1. Circuit of complementary pulse generator.

Fig. 2. Rise and fall times of the circuit.
capacitor to discharge through it. Here again, the collector load of $\operatorname{Tr}_{1}(100 k \Omega)$ allows $T r_{1}$ to saturate easily. The rate of discharge of C through $T r_{1}$, when made equal to the charge rate, generates the triangular waveform. The output from the capacitor is picked off by another emitter follower Tr_{3} for the purpose of providing a low output impedance to the load. The p-p amplitude of the waveform is limited due to the same drawback confronting the usual bootstrap circuit-a time is required for the recovery process of the 'floating battery', when recurrent charging and discharging take place. Here a p-p amplitude of 3.0 V was obtained. The com-

Generator circuit with charge time equal to flyback time.
ponent values of the circuit given provide a frequency of 50 Hz . With suitable changes in value of C and adequate fast measures to recharge the 'floating battery' the operation can be extended to higher audio frequencies as well. Transistors used were 2N911.

S. Nagarajan,

Hyderabad,
India.

'Proportional' output stage for temperature control

The main feature of the circuit is the high on/off power ratio obtained, typically 80 dB . It is basically a power phasesensitive detector, and may be driven from the amplified output of an a.c. Wheatstone bridge, which is energized from the same supply as the output stage. The circuit

Control circuit with low power dissipation when off.
shown delivers 30 W into 30Ω and is highly stable under all conditions provided that the heat sink for the power transistors has a thermal resistance not greater than about $3^{\circ} \mathrm{C} / \mathrm{W}$. Output power is typically about $0.3 \mu \mathrm{~W}$ in the off state.
M. Gluyas and B. W. James,

University of Salford,
Lancs.

Thelight
 hearyweight champion wins on points

Solartron's light hear.jweight champion the CD1642, is a natural-born wirner Look at its advarit=ges.
Fully transistorised portazility, running off every power source you use, with an optional rechargeable battery attach nent too.
And you lose nothing in full-size lab. 'scope performance. It has $10 \mathrm{mV} / \mathrm{cm}$ sensitivity at 15 MHz , triggering to 25 MHz , dual
trace, D.C. -15 MHz , brilliantly cris displays and exceptional focus right to the edges. And to top it off, we AGREE test every machine for a week in the toughest conditions to assure top performance.
So stop worrying about losing performance in the field. The CD1642 gets a load off your mind as well as your arm. Post the magazine's reply-paid card and we'll send you our data sheet of full details.

GOLAETRON Schlumberger

[^7]

Now you can purchase a laboratory stock of 600 of Electrosil's C 3 resistors (dW at $70^{\circ} \mathrm{C}$) in a smart kit designed to give you quicker selection of the values you need right through from 10Ω to $150 \mathrm{k} \Omega$.

The new pack, which is strongly made in Perspex, provides the design engineer with 20 resistors in each of 30 values all conveniently held in clearly labelled plastic tubes.

Measuring approximately $15^{\prime \prime}$ by $4^{\prime \prime}$ by $2 t^{\prime \prime}$ the caid) paid) - much less than you would pay for a simila selection of C3 resistors bought separately

Order now from your usual Electrosil distributor or write to us for full details of the lab kit offer.
C3-the smallest glass tin oxide resistor.
Electrosil Limited, P.O. Box 37, Pallion, Sunderland, Co. Durham.
Telephone Sunderland 71481. Telex 53273.
Electrosil
have the experience

Electric Field Probe

High-impedance paper leads avoid field disturbance

by J. Thickpenny

Recently an active probe has been developed by Green ${ }^{1}$ using high-impedance leads in the frequency range $150 \mathrm{kHz}-30 \mathrm{MHz}$ to measure the near ($<\lambda$) electromagnetic field. The r.f. signal is amplified and rectified inside a hollow dipole and the resulting d.c. voltage, which is proportional to the electric field intensity, is transmitted via high impedance leads (distributed resistance $25 \mathrm{k} \Omega / \mathrm{ft}$) to a remote d.c. voltmeter. An impedance of this magnitude is necessary since metallic leads would perturb the field being measured. The leads used by Green were 30 ft long and 0.03 in . in diameter and comprised carbon fused into polytetrafluoroethylene (p.t.f.e.). This type of lead proved to be very efficient and field measurements have been made to within 1 dB . However, to date, this carbon/p.t.f.e. lead is unavailable on the British market so a similar probe was constructed with leads made out of high impedance paper (Teledeltos pen recording paper). This paper-lead probe was very sensitive to small field changes and exhibited a cross field rejection $>40 \mathrm{~dB}$ when tested in a capacitive field. Also measurements recorded in an arbitrary electromagnetic field were repeatable ($\pm 1 \mathrm{~dB}$) for any lead position as long as the first foot is approximately perpendicular to the probe length.

The probe was constructed as shown in

TABLE 1	
Results	D.V.M. reading
Probe in vertical position and batteries disconnected	1.7 mV
Mean of ten readings taken in horizontal plane $\left(E_{H}\right)$	8.5 mV
Vertical measurement $\left(E_{V}\right)$	1.077 V
Therefore cross field rejection	$>40 \mathrm{~dB}$

Fig. 1. The r.f. amplifier, balanced rectifier and the two $9-V$ batteries were positioned inside a brass tube (balanced dipole). The rectifier output was connected to the two paper leads approximately $\frac{1}{8}$ in. from the Tufnol bush. Adequate contact was made by wrapping the paper around the two protruding 20 s.w.g. output wires located in the Tufnol bush with plasticine and then covering with at least six turns of 35 s.w.g. wire.

Apart from the probe end, where the paper was tapered, the width of the paper was approximately 1.25 in . and two lengths of 15 ft had a d.c. resistance $>0.75 \mathrm{M} \Omega$. Small croc. clips were used to connect the paper leads to a high impedance digital voltmeter ($>25 \mathrm{M} \Omega$). When taking measurements greater lead flexibility was obtained by folding the paper lengthwise into a "V"
shape. The a.c.-d.c. response of the r.f. amplifier, rectifier, leads etc. (not including dipole), is shown in Fig. 2.

Polarization tests in capacitive field

The probe was positioned between the plates of a capacitor which comprised two $90 \times 110 \mathrm{~cm}$ pieces of metal situated 130 cm apart, Fig. 3.
Due to the probe size relative to the plate dimensions no attempt was made to calibrate the probe. However, the cross field polarization can be determined from this simple arrangement since, although plate fringing will distort the ideal linear vertical voltage distribution, the horizontal component at the centre will remain effectively zero.
The results are given in Table 1 and show a considerable improvement when compared with a dipole of the same physical length using metallic leads- 15 dB being the measured cross field rejection.

Measurements in an arbitrary electromagnetic field

Due to space required at 7.7 MHz it was not possible to test the probe in a standard field. However, the effects of the paper leads, etc., can be shown by taking measurements

Fig. 2. A.c./d.c. response of electronic circuits.

Fig. 3. Diagram of capacitor.

Fig. 4. Diagram showing probe location.

TABLE 2
Results of one measurement run

θ°	$\boldsymbol{E}(\mathrm{V})$	θ°	$\boldsymbol{E}(\mathrm{V})$
0	0.295	180	0.263
10	0.442	190	0.391
20	0.625	200	0.572
30	0.775	210	0.695
40	0.909	220	0.856
50	1.004	230	0.979
60	1.108	240	1.059
70	1.162	250	1.125
80	1.187	260	1.155
90	1.188	270	1.146
100	1.162	280	1.054
110	1.075	290	0.973
120	0.972	300	0.862
130	0.835	310	0.741
140	0.659	320	0.567
150	0.428	330	0.388
160	0.271	340	0.245
165	0.216	345	0.212
170	0.180	350	0.204
175	0.183	355	0.225

Noise voltage with batteries disconnected $\approx 2 \mathrm{mV}$

Fig. 5. The probe with its "paper" leads $\left(\theta=270^{\circ}\right)$. The assistance given by J. Bruce in constructing the probe is gratefully acknowledged.
in one plane 0075λ from an electric source and rotated by 360° as shown in Fig. 4.
The paper leads for the first foot were positioned parallel to the angle of rotation θ plus 90°, and at $\theta=270^{\circ}$ (photograph) they point towards the source before turning back around the probe in the " y " direction (digital voltmeter situated approximately 10 ft in " y " direction and 2 ft below the $x y$ plane. The selected measurement plane was convenient since there was a \max / min voltage ratio of about 6 . The results in Table 2 from one measurement run give an estimation of the repeatability. At any one position a complete rearrangement of the paper leads only produced voltage variations of $\pm 10 \%$. (This is a random error which can be minimized by making many measurement runs.)
The results show that it is possible to make sensible near-electric-field measurements using paper high impedance leads to transmit a d.c. voltage from the probe to a remote indicator. It has been suggested that silver paint would produce a better paper-to-wire connection but experiments made with a thermal-setting silver paint weakened the paper to breaking point under the slightest pressure.
Measurement runs have also been made at 1000 MHz in the aperture of a $11-\mathrm{dB}$ pyramidal horn by strapping the paper leads (0.25 in . wide; $100 \mathrm{k} \Omega$ per 6 in .) directly on to a backward diode. The electric field distributions have not yet been thoroughly compared with the theoretical distributions but the repeatability was of the same order as that experienced at 7.7 MHz . At 1000 MHz and above, due to the theoretical difficulties involved in calculating the electric field, especially around the horn aperture rim, a better assessment of the paper leads could probably be determined by comparing the field distributions with those obtained from another measurement system, e.g., the modulated scattering technique. ${ }^{2}$

A further possible use for this type of paper would be to supply the d.c. power for a telemétric probe (probe which re-radiates a signal on the same receiving dipole), where at frequencies above 500 MHz the size of the batteries is a limitation on the size of the probe.

REFERENCES

1. Green, F. M.: "Near Zone E/M Field Measurement Studies," NBS Report 9191 , March 1966.
2. Richmond, J. H.: "A Modulated Scattering Technique for Measurement of Field Distribution," I.R.E. Transaction M.T.T., July 1955.

Correction

"Simple Audio Pre-amplifier" (May 1970): Readers may have noticed a contradiction between the text at the beginning of p. 209 and the circuit diagram of Fig.4. The junction of C_{10} and R_{6} should go to the collector of Tr_{2} not to the emitter. The correct connections are shown below.

Metal Glaze Resistors

How metal glaze resistors are made and how they compare with other types

by K. L. Dove*

For many years circuit designers had to rely mainly on wire wound or carbon composition resistors. The former are still in use today when high power dissipation is important. Wire wound resistors are of high stability and can be made to close tolerances. The parameters can be changed by varying the type of wire, the former and encapsulation employed. The main disadvantages of this type of resistor are highcost, large-size and the difficulty of producing resistors of high ohmic value.

Carbon composition resistors are less expensive because of the method of construction and the cheaper materials employed. They have improved over the years and 5% tolerance is about the best that can be obtained at present although stability during life cannot be expected to be better than about 10%. Throughout the world many hundreds of millions of these resistors have been used annually in the less critical applications. However, for more demanding purposes there is now a complete range of resistors including cracked carbon, metal film, tin oxide, and now thick film metal glaze. Table 1 shows some of the more important attributes of glaze resistors compared with the current limits of Defence Specification DEF5115 for other types of resistor.

The construction of one type of carbon composition resistor is worth noting, as the glaze resistors described here are similarly made. Conducting carbon is dispersed with an insulating filler in a varnish, the ratio of the materials determining the resistance value. This coating is applied to a substrate and cured to form the resistor. In the glaze

[^8]

Fig. 1. The construction of a metal glaze resistor.
resistor more stable materials are used; metals and stable metal compounds are employed in place of the carbon, and fused glass replaces the varnish binder, resulting in a component of far superior stability.
A considerable amount of development work has been carried out on different glaze materials intended for silk screen printed thick film circuitry. Several papers have shown the excellent performance of the glaze type of resistor although much of this work cannot be fully utilized because other components, such as high value capacitors, are difficult to manufacture using compatible printing techniques. For this reason, glaze resistors are being manufactured by the Dubilier Condenser Co. (1925) Ltd., as discrete components to enable users to benefit from their excellent properties without the high cost of development and tooling required for the production of hybrid thick film circuits.

This article describes these discrete resistors constructed as shown in Fig. 1. The ceramic substrate is coated with a
glaze consisting primarily of a glass powder and a metal dispersed in an organic solvent. After drying the glaze is fired at temperatures up to $1150^{\circ} \mathrm{C}$ for up to half an hour so that the glass will melt and re-flow. After termination of the element ends the glassy resistive coating has a spiral cut in it to increase the resistance to the required value. The wires are then soldered and the assembly moulded in a silicon modified phenolic resin to impart mechanical strength, uniform shape and to enhance the tropical characteristics.

Design

The choice of ceramic substrate is important because it has a major influence on the final properties of the resistor, since during manufacture, the glass is fused to the substrate to form an integral element. The ceramic substrate is usually alumina, but the final choice will depend on the purity, smoothness, inertness, strength, thermal conductivity, cost, resistivity, thermal expansion and consistency. All these, in turn, affect the properties of the finished resistor. For instance the thermal conductivity affects temperature rise. The thermal expansion must be similar to that of the fired glaze in order to prevent cracking and crazing of the glass coating.

The glaze employed is of great importance. The first glazes used as resistive inks were made from noble metals and borosilicate glass. The use of noble metals is undesirable due to cost although glaze inks containing palladium silver have been commercially available for several years. Many other metal compound glazes have

Type of reslstor	Carbon Composition	TABLE 1 Cracked Carbon	Metal Oxlde	Metal Glaze		Metal	Wire Wound
Pattern	RFG 1	RFG3	RFG5	Service Rating	Commercial Rating	RFG7	RFP1
Length mm*	10.7	15.6	7.1	6.7	6.7	17.8	20.7
Diameter mm*	2.7	6.4	2.5	2.5	2.5	8.0	7.1
Watts at $70^{\circ} \mathrm{C}$	0.25	0.25	0.25	0.25	0.5	0.25	0.25
Load life stability	15\%	2\%	3\%	0.5\%	1\%	0.5\%	0.05\%
Selection tolerances \%	5. 10 ,	2	1.2.5	1.2.5	1,2,5	$0.1,0.5$	0.1 .0 .5
Temp. coeff. max. ppm/ ${ }^{\circ} \mathrm{C}$	-1200	-1200	250	100	100	50	20
Max. surface temp ${ }^{\circ} \mathrm{C}$	125		180	150	150	150 1009.1MO	120
Resistance range	108.22 MQ	10S-2MO	10¢2-150K』	108-150KO	108. $150 \mathrm{~K} \Omega$	$1008-1 \mathrm{M} \Omega$	$10 \Omega 510 \mathrm{k} \Omega$
Humidity class	H515\%	H62\%	H61\%	H61\%	H61\%	H60.5\%	H60.05\%
Max. temp. rise	$55^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$

been investigated some of which are commercially available for printing thick film circuits. These include titanium, chromium, tin, zirconium, molybdenum, tantalum, indium, tungsten, ruthenium, and thallium, used in combination with oxides, carbides and nitrides.

The claims of various glaze manufacturers differ widely, but the essential properties of any metal used are that it shall not dissolve in glass and it should be chemically stable. The metal particles are divided down to micron sizes, and mixed with glass powder of a similar size and an organic vehicle-various other additives can be used to control the viscosity and thixotrophy of the glaze mix, and to control the flow characteristics both during the application of the ink and during the firing operation. Additives can also be used to control the properties of the finished resistor, and this is one of the advantages of metal glaze resistors, since with continued research and development, the properties which the resistor user looks for will be achieved and continually improved.

The sheet resistance obtained from glazes 0.5 to 1 mil in thickness can now be varied from as low as $10 \Omega / \mathrm{sq} *$ to $10^{6} \Omega / \mathrm{sq}$ and other properties such as temperature coefficient are continually being improved.

The change of sheet resistivity with percentage weight of metal varies considerably with the materials chosen for the glaze ink. As the percentage of glass is increased the resistance increases, and for a pure metal such as silver, the rise in resistance is very rapid. As the glass content increases there is little change in resistance until a point is reached where the silver particles are no longer in close contact and then the resistance rise is extremely rapid. This state of affairs is not satisfactory for the resistor designer since a reasonably linear change of resistance, with conductor concentration over a fairly wide band, is what is really wanted. A change of one resistance decade for a change of about 10% in the conductor concentration and a resistivity running from about $100 \Omega / \mathrm{sq}$ to $100 \mathrm{k} \Omega / \mathrm{sq}$ is usually satisfactory.

The conductive particles in an ideal glaze mix are embedded in a continuous mixture and should, therefore, possess a very high degree of stability. Very low resistance values can, however, be less stable because of the lack of glass and it is therefore necessary to change to a metal which is a better conductor. Conversely, in order to obtain high values of sheet resistivity, a change in the metal compound may be preferred to a further increase in glass content which is likely to give an intermittent nature to the conducting particles in the fired glaze. Generally, it is best to keep the metal content between 25% and 75% of the total weight of the solids in the glaze. In order to obtain accurate and reproducible results, the firing of the glaze is done in a conveyor furnace as the maximum

[^9]temperature distribution and firing time play a critical part in the value of sheet resistance, temperature coefficient and other properties of the finished resistor. The atmosphere of the furnace also affects the resistor and certain glazes require air or oxygen to form oxides in the resistor, whilst other glazes must be fired in an inert atmosphere.

After the glaze is fired to the ceramic rod, the terminations are applied and the element then forms a usable resistor. The glaze surface is then spirally cut with a diamond wheel to adjust the resistance value. By using a close pitch and more turns, the resistance value can be increased by up to 150 times the value before the spiralling. Besides increasing the resistance range of the glaze, the spiralling has the added advantage of being able to trim the resistor to a very close tolerance, and resistor tolerances of 2% or even 1% can be obtained with good yields. The temperature coefficient is influenced by the aspect ratio as well as the glaze formulation and care must be taken to ensure that the resistance track is not made too long at the expense of track width as instability can result.

Characteristics

The temperature coefficient usually varies with sheet resistivity, i.e. the metal content and type of metal in the glaze. Pure metals usually exhibit a positive temperature coefficient while semiconductors have negative temperature coefficients. The values for metal glaze resistors may be either positive or negative depending on the ratio of metal-to-metal compound and the glass content, and can generally be controlled within ± 200 p.p.m. $/{ }^{\circ} \mathrm{C}$ and some glazes and concentrations yield ± 50 p.p.m.

Because of the method of construction and the extremely high temperature used for firing, metal glaze resistors may be run at very high temperatures and loads. Several papers have been published which indicate that ratings of 10 W per square inch of film area are readily available with intermittent loading to 100 W at temperatures up to $225^{\circ} \mathrm{C}$.
The film in the discrete resistor described here can be rated at 25 to 50 W per square inch, but it must be remembered that this is due to the good heat conductivity of the ceramic substrate, the quality of the termination joint to the element and firally dissipation by the wires.

Metal glaze resistors constructed in the manner described meet fully all the require-

Fig. 2. Typical temperature rise with power dissipation for the RGO7 resistor.

Fig. 3. Typical test results showing the percentage change of resistance for given conditions. (a) Conditions as per DEF5115/RFG5F at rated volts at 70° C for 2000 hours; spec. limit $\pm 3 \%$. (b) Same conditions as (a) but for 10,000 hours. (c) Tropical exposure with light load for 1,344 hrs; spec. limit $\pm 1 \%$.
ments of DEF 5115-1 Pattern RFG5 and have superior performance under conditions of overload due to the thick robust film surface and alumina ceramic which dissipates the heat more readily than other substrates. (The thermal conductivity of ceramic is 5 to 10 times that of glass.) Fig. 2 shows the increase in surface temperature with percentage of rated power input which demonstrates how cool this type of resistor will run.

It is a well known fact that an increase in temperature increases the degradation rate of electronic components and the fact that this metal glaze resistor runs cooler than equivalent types, under the same conditions of loading, contributes to the excellent life test data shown in Fig. 3. It can be seen that when the metal glaze resistors are tested at rated wattage and $70^{\circ} \mathrm{C}$ for 1.5 hours on load 0.5 hour off, in accordance with DEF 5115, that the change of resistance value is well within the limit of $\pm 3 \%$ allowed at 2000 hours of testing. A histogram after 10,000 hours (i.e. 5 times the normal specification limit) shows the percentage change of resistance is still well within the specified limit of $\pm 3 \%$.

47th Edition

The Radio Amateur's Handbook, the 47th (1970) edition by the American Radio Relay League, has new material throughout. The portable / mobile and aerial chapters have been completely rewritten. Semiconductor tables have been much expanded. Among the new construction projects are universal power supplies (for all voltages from 3 to 3000 V); solid-state receivers, transmitters and converters. Two new linear amplifiers are described in the transmitting chapter. Pp. 710. American Radio Relay League, Newington, Conn., 0611 U.S.A. Price 48 s from The Modern Book Co., 19-21 Praed Street, London W. 2 .

World of Amateur Radio

Amateurs seek more space facilities

The recent meeting in Brussels of the I.A.R.U. Region 1 v.h.f. working group has been concerned with preparations for next year's I.T.U. world administrative conference on space communications. While amateurs are concerned primarily with retaining their present frequency allocations in the face of increasing pressures from other services, they also want to obtain less restrictive regulations on their space activities. At present international regulations permit the use of artificial satellites in the band 144 to 146 MHz only. Official support is being sought for widening both the definition of amateur space communication activities and for the extension of facilities to all u.h.f. bands up to 10 GHz . While such proposals already appear to have official backing in the United States, the response from Region 1 countries is considered disappointing.

The American organization A.M.S.A.T. is planning a long-life, multi-channel active transposer-type satellite for Oscar VI (to be known as Oscar B until launch) carrying experimental packages from other groups. The British "Project Trident" group is hoping to build a transposer-type satellite with 144 MHz for the up path and 433 MHz down.

B.A.T.C.'s 21st Anniversary Convention

In 1949, a young British amateur, Mike Barlow, G3CVO (now a professional television broadcast engineer in Canada), began circulating a duplicated newsheet called "CQ-TV" and so launched the British Amateur Television Club. The following year, Ivan Howard, G2DUS, exhibited an amateur-built camera channel at the R.S.G.B. exhibition and soon after assisted in $430-\mathrm{MHz}$ tests which resulted in the Post Office agreeing to grant amateur TV licences.

Since then many forms of amateur TV activity have continued to appeal to a group which, although never amounting to more than a few per cent of licensed amateurs (there are currently about 180 stations licensed for amateur TV in the U.K.), make up for this by the quality of their efforts.
B.A.T.C. membership ranges from young amateur enthusiasts to senior engineers professionally engaged in television. Much of the appeal stems from the chance to pursue independent activities, free from professional direction, and the achievement of making for a few pounds equipment which would cost perhaps $£ 500$ to buy.

To mark its 21st anniversary the club is holding a two-day convention on amateur TV at Churchill College, Cambridge, on July 25 th \& 26th, featuring lectures, films and video tapes, visits to an equipment manufacturer and to amateur stations, an exhibition of amateur equipment, and a convention dinner on the Saturday evening. It is expected that demonstrations of the reception of a number of amateur TV stations will be possible at the College. Residential accommodation will be available from the Friday or Saturday evening until Sunday tea-time. Ladies will be welcome at all events.

For a still relatively small group the programme is an ambitious one. Convention forms available from D. S. Reid, 71A Rose Valley, Brentwood, Essex.

Illegal operation

The Minpostel and the Post Office appear to have stepped up their efforts recently to break up the blatant "pirate" operation which has been going on for a long time around 6.5 MHz . Until quite recently this part of the spectrum has appeared at times to have been virtually taken over for "amateur-type" operation by pirates, often posing as part of Army Cadet networks.

Telecommunications Day

Among the special-activity stations expected to commemorate the second World Telecommunications Day (May 17th) are 4U7ITU in Geneva and GB2ITU and GB3ITU in London. The theme of the day is the use of telecommunications for educational purposes and the training of telecommunications specialists. A special c.w. contest on May 16th and a phone contest on May 17th (all h.f. bands) has been sponsored by the Brazilian Ministry of Communications. An I.T.U. Trophy
will go for one year to the national society of the country whose top ten contestants score the most points, with a gold, silver and bronze medal to the three highest scoring amateurs.

Mobile rallies

The 1970 mobile rally season is now in full swing, and the following are among the many events planned for June. A tenth anniversary rally at H.M.S. Mercury, Petersfield, Hants, on June 14th organized by the Royal Navy Amateur Radio Society and the Portsmouth and Fareham radio clubs. An Anglian rally at the Suffolk Showground, Ipswich, on June 20th-21st. The annual rally of the University College of Swansea amateur radio society at Singleton Park, Swansea, on Juinie 2 Ist. The Longleat Safari rally (Longleat House, near Warminster) on June 28th organized by Bristol R.S.G.B. group.

An Edwardian amateur

A link extending back 54 years to the early amateur radio era of 1906 -1914 has been broken with the death, at the age of 82 , of Maurice Child. He founded the London Telegraphic Training College at Earls Court and held such callsigns as ECX and, in the early 'twenties, 2DC. The $1-\mathrm{kW}$ spark transmitter at his training school became one of the best-known amateur stations in the pre-1914 period, his licence officially permitting contacts up to ten miles. He had witnessed the early Marconi experiments between Poole and the Isle of Wight. He was associated with many pioneering events, including the radio coach "6ZZ" attached to an L.N.E.R. train in July, 1924, to investigate the feasibility of radio communication with trains.
In Brief: The Morse proficiency transmissions (20 to 40 words per minute) on G3BZU have been restarted on the first Tuesday of each month at 20.00 B.S.T. on 3520 k Hz . Certificates are issued for correct copy (QRQ Manager, Royal Navy Amateur Radio Society, H.M.S. Mercury, Petersfield, Hants.) . . . JA3XPO is the callsign of the official EXPO 70 station at Osaka, active on all h.f. bands on c.w. and s.s.b. The address of the QSL Bureau of the Irish Radio Transmitters Society has been changed to: P.O. Box 462, 12 Stella Avenue, Dublin First station to gain the new five-band "worked all states" a ward was W1AX (formerly W IJYH) During 1969, the A.R.R.L. issued 2000 "worked all continents" awards . . . Rhodesian beacon station, ZE2AZE, is operating on a 24 -hour basis on 69.998 MHz . . . Ever heard of a country called "Market"? The A.R.R.L. has recently added this little known island, located exactly on the boundary between Finland and Sweden, to the official DXCC country list . . . A portable station operated by the Cambridge University Wireless Society has made the first 1296 MHz contacts between the Isle of Man and England and Wales. Pat Hawker, G3VA

Personalities

Data Recognition Ltd, of Reading, has announced the appointment of David J. B. Carter, A.M.I.E.E., Grad.I.E.R.E., and Brian F. Bradford, A.M.I.E.E., as senior sales executives. Mr. Carter was with Trend Electronics for $2 \frac{1}{2}$ years as home sales manager prior to joining Data Recognition. Before that he worked for Elliott Automation as a systems sales engineer and for I.C.I. as an electronics development engineer. David Carter was awarded a Thorough good scholarship in 1959 and studied electrical/electronics engineering at Reading Technical

David Carter

College. Mr. Bradford was, until recently, with I.B.M., where he was a systems engineer specializing in document readers. Prior to that, he was a product marketing manager with SGS-Fairchild Semiconductors, which he joined in 1966 after spending seven years with Solartron Ltd. Data Recognition has also appointed P. J. Pulien, who joined the engineering service department two years ago, a sales executive. Mr. Pullen, who is 31 , was a service engineer with Ohrtronics Lid and Kode Electronics before joining Data Recognition.

Clive Hollins has joined Brookdeal

 Electronics Ltd as chief of test at their new factory in Market Street, Bracknell. Much of Mr. Hollins' experience of electronics was gained in the Navy in which he enlisted in 1955 as junior radioelectrician's mate (Air). After initial training he moved to the Fleet Air Arm where he worked on airborne radar and radio equipment and, for the last two and a half years of his service, on ground installations at R.N.A.S., Lossiemouth in Scotland. On leaving the Fleet Air Arm in 1968 he was employed by Racal-BCC as an electronics tester and subsequently as test engineer. Mr. Hollins, who is 31, is an amateur radio transmitter (G8BOU) and acts as radio instructor and communications officer to Windsor and Eton Sea Cadets Corps. Brookdeal have also announced the appointment of 29 -year-old Ian Stimpson as senior product development engineer at the Bracknell factory. Mr. Stimpson gained his early experience of the electronics industry with Ultra Electronics which he joined in 1959 as a student apprentice. During his apprenticeship he took a sandwich course at Southall Technical College, obtaining his Higher National Diploma. From 1964 until his present appointment he had been with Strand Electric. initially as design engineer and later as head of their electronic design section.

Harold Stern, B.Sc., recently joined Techmation Ltd, of Edgware, to co-ordinate and control the company's marketing activities. Mr. Stern, who contributes an article on a modern direct voltage calibration system in this issue, graduated in physics and mathematics from Queen Mary Collegé, London University, in 1953. He has served with several companies, including E.M.I. Electronics, Cawkell Research \& Electronics, Honeywell Controls and latterly with Fluke International Corporation where he was sales manager. Techmation have also announced the appointment of Vic Holmes as service manager. with full responsibility for customer liaison and the running of the Electronic Service Department. He joined the company in July 1969 having previously worked for Caps Research and Advance Electronics.

Robert Hirst, M.I.E.R.E., has been appointed director of engineering to Audits of Great Britain Lid. the company which carries out national television audience measurement surveys. Mr. Hirst, aged 35 , who has frequently

Robert Hirst

contributed to Wireless World was with Standard Telephones and Cables where he was initially an engineering group leader on design, development and planning of h.f. products and latterly manager of special assignments in the Aviation Division.

Dr. George H. Brown, executive vice-president (patents and licensing) of RCA Corporation, has accepted the invitation of the Royal Television Society to become a fellow. Dr. Brown has been with RCA since 1933 where his early work was on the development of the turnstile aerial for television and v.h.f. sound broadcasting. From 1948 to 1957 Dr. Brown played a leading part in the development of the N.T.S.C. colour tele vision system.
R. M. Denny, M.I.E.R.E., has joined the London executive staff of Rediffusion Ltd with a view to his being appointed, in due course, to the boards of companies in the Rediffusion Group. From 1955 until last month, Mr. Denny, who is 43 , served with A.T.V. Network Ltd where he was at one time head of the sound department and since 1967 had been general manager (Elstree). Prior to joining ATV Mr. Denny was with the B.B.C. for nine years and also spent three years in the Royal Navy.

A Ministry Liaison Officer has been appointed by Cambridge Consultants. He is Wing Commander Alec Cross, O.B.E., who joined the R.A.F. in 1926 as a technical apprentice, and was commissioned in the Flying Branch in 1939. Since 1949, he has held a number of appointments including Commander of the Underwater Missiles Unit at Gosport, Commander R.A.F. Porton and Commander of the

Strategic Bombing Group at Boscombe Down. For two and a half years he did research work with the United States Air Force in Florida. Cambridge Consultants claims to be the largest independent contract R \& D company in Britain.

Bernard Ness is joining The Plessey Company Ltd on July Ist as a divisional director within the Components Group. He will assume responsibility for the development of the Garrard operation and other Plessey consumer activities in audio/visual communications. Mr. Ness, who is 45, was formerly with E.M.I., the Rank Organization and R.C.A.

Ronald M. White, has been appointed marketing director of Advance Filmcap Ltd, of Wrexham, the capacitor subsidiary of Advance Electronics. He joined the company just over a year ago from Electrosil where he was a Northern Area sales manager for a number of years. Mr. White previously spent three years with Plessey as a sales engineer having started his engineering career with G.E.C. in Coventry.

Frank Clements, who has been in charge of all engineering and development work at Teleng since he joined the company 15 years ago, has been appointed chief engineer. Mr. Clements, who was for $2 \frac{1}{2}$ years a lecturer in electronic experimentation at S . Xavier's College, Bombay, where he graduated, joined Teleng shortly after its formation as Telefusion Engineering Ltd in 1955. The company, which operates from South Ockendon, Essex, specializes in television distribution systems.

The Dubilier Condenser Company has announced the appointment of Bernard V. Sargent, A.M.I.E.E., as

Bernard Sargent
marketing manager. Prior to joirring Dubilier he held executive appointments with Electrosil, M.E.C. and The Plessey Co.

F.M./A.M.
 Demodulator I.C.

Two integrated circuits from Signetics International, the first of their kind, will precisely duplicate the frequency of a signal and can demodulate f.m. and a.m. waveforms without tuned circuits. These new products represent the first of a family of phase-locked-loop linear integrated circuits. Categorized as NE560B and NE561B, the frequency range is from 1 Hz to 30 MHz and the lock range is adjustable from $\pm 1 \%$ to $\pm 15 \%$. These circuits will operate with signals of $100 \mu \mathrm{~V}$ to 1 V , with best operation at an input of 5 mV . Signetics International, Trident House, Station Road, Hayes, Middx. WW 301 for further details

PAL Delay Line

A miniature solid delay line specially designed for use with PAL systems is available from Impectron. Dimensions are: height 44.2 mm , width 49.2 mm and depth 7.3 mm . Called the MS9P, it has a delay time tolerance of $\pm 3 \mathrm{~ns}$ at a nominal frequency of 4.433619 MHz on the nominal delay time of $63,943 \mu \mathrm{~s}$. Impectron Ltd, Impectron House, 29/31 King Street, London W. 3.
WW 302 for further details

Broadband "Discone" Aerial

A vertically polarized "discone" aerial designed for field communication is available from Microwave International. The unit is mounted on a ground plane of 12 radials. A cylindrical radome encloses the

vertex of the cone for structural strength and waterproofing. It is supplied with a base flange for mounting. The frequency range is $250-1000 \mathrm{MHz}$, radiation pattern omnidirectional, input impedance 50Ω, input power 750 W , and weight 4 kg . Microwave International (U.K.) Ltd., 33-37 Cowleaze Road, Kingston upon Thames, Surrey.
WW 304 for further details

Inverter Assemblies

The M48 E.H.S. augments the standard range of low-power output inverter modules introduced last year by Gardners Transformers. It offers power ratings up to 30 W stabilized or 50 W unstabilized in a standard mechanical assembly. The assembly incorporates a single power stabilizer which would be fitted in the d.c. output line for

single output inverters or in the input to the inverter where multiple outputs are specified. The whole assembly is encased in resin which is highly conductive thermally and shock absorbent. Input and output connections are by flying leads. Gardners Transformers Limited, Christchurch, Hants.
WW 312 for further details

High-speed Switching Transistor

A silicon transistor, type MM4049, with an extremely high switching speed, is now available from Motorola. Claimed to represent a significant advance in p-n-p currentmode switches, the device has a minimum f_{T} of 4 GHz and a typical $C_{o b}$ of 0.8 pF . These values are respectively double and half the values for previous similar switching
devices. Other important characteristics of the MM4049 include a maximum leakage current of 10 nA (at 10 V) and a d.c.current gain of 20 to 80 (at 25 mA and 2 V). Primarily designed for use as a highfrequency current-mode switch in digital circuit applications such as pulse generators, counters, radar receivers and computers, the device will also be useful as an r.f. amplifier and oscillator due to its extremely high current-gain/bandwidth. Its low collector-base time constant (15ps max.) also enables it to be applied in some u.h.f. linear applications. The device is packaged in a TO-72 can and exhibits a high degree of resistance to neutron radiation. Cost is 93s 11d each for quantities of 100. Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx.
WW 311 for further details

Frequency Converter

Most electronic equipment will operate equally well from 50 Hz or 60 Hz supplies but some devices, such as chart drive motors, or constant voltage transformers,

must be fed with the correct frequency. Other devices cannot tolerate the shortterm variations of local mains supply. The frequency converter unit shown here, type FC110/-\%, provides a supply of 110 W at the required frequency and is powered by local mains. The unit in the photograph is an export version, accepting either 110 V or 220 V input at 60 Hz , and delivering either 115 V or 230 V at 50 Hz . Variants are available for operation from 50 Hz supplies, to deliver 60 Hz and to deliver 50 Hz with a stability of a few parts in one thousand. It is possible to lock these to an external signal. Other variants provide crystal control of frequency, $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ interlock to permit synchronization in a mixed Anglo-American system, 400 Hz output. The distortion figure for this particular unit is under 10%, but lower distortion levels can be provided. A square wave output can be offered at a slightly lower cost. R. Gilfillan \& Co. Ltd, Southdownview Road, Worthing, Sussex.
WW 305 for further details

I.C. for TV
 Sound Systems

The CA3065 from RCA is a 14 -lead dual-in-line plastic package incorporating a monolithic integrated circuit which combines a multi-stage i.f. amplifier limiter, an f.m. detector, an attenuator, a zener diode power-supply regulator and an audio amplifier-driver. Drive to the audio output stage of a television receiver is achieved via the audio amplifier-driver which is designed
so that it may be directly coupled with either an n-p-n power transistor or a high-transconductance valve. Replacing the conventional volume control is the "electronic" attenuator in which the bias levels are changed by means of a variable resistor connected between the control terminal and earth. There is no audio signal present at this terminal and therefore hum and noise can be bypassed. The audio drive capability is $6 \mathrm{~mA} \mathrm{pk}-\mathrm{pk}$ and the undistorted audio output voltage is 7 V pk-pk. Electronic Components Division, RCA Ltd, Sunbury-on-Thames, Middlesex.
WW $\mathbf{3 0 9}$ for further details

Heatsink for i.c. Module

To give extra power handling ability to integrated circuit modules Redpoint has produced heatsinks type DIP14/1 and DIP14/4. The sink is of finned aluminium, and heat resistant silicon rubber springs

ensure good thermal contact between the sink and the module. The DIPI4/I and DIP14/4 are rated at $30^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ per watt respectively. Redpoint Ltd, Lynton Road, Cheney Manor, Swindon, Wilts. WW 316 for further details

Op-amp Power Unit

Type 705 dual power supply from Microtest, is a low-cost unit for analogue and digital integrated circuits. The output voltages are independently adjustable from $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ at 100 mA . For series connection the output is variable from 24 to 30 V . Mains regulation is 0.01% and load regulation better than 0.02%. Ripple and noise amount to less than $250 \mu \mathrm{~V}$ peak-topeak. Current protection takes the form of foldback limiting. Price $£ 18$. Microtest Ltd, 28 Walker Lines, Bodmin, Cornwall.
WW 310 for further details

I.Cs for Data
 Communication Interfaces

Motorola have available a quad d.t.l. line driver (type MC1488L) and quad d.t.l. line receiver (type MC1489L), which have been specifically designed for interfacing datatransmission lines with ancillary equipment. Principal characteristics of the MC1488L driver include a current-limited output of 10 mA maximum, an output resistance of 300Ω minimum, a flexible operating supply range, and simple slewrate control by means of an external capacitor. The MC1489L receiver has an input
resistance of 3 to $7 \mathrm{k} \Omega$, an input signal range of $\pm 30 \mathrm{~V}$, good input threshold hysteresis, and response control for logic threshold and noise filtering. Up to four lines can be driven (or received), by the two devices, which each contain four integrated circuits.

Both the MC1488L and MC1489L are available in four-circuit 14-pin dual-in-line ceramic packages, and have an operating temperature range of 0 to $70^{\circ} \mathrm{C}$. Prices for 100 or more are 93 s 11 d and 83 s 6 d each respectively. Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx.
WW330 for further details

Miniature Wafer Switches

A range of miniature rotary moulded wafer switches is being produced by Lorlin Electronic Co. Only 25 mm in diameter each switch is made up of self-spacing wafers with a diecast indexing mechanism. The range of wafers extends from l-pole 12 -way to 6 -pole 2 -way, and indexing can be $30^{\circ}, 45^{\circ}$ or 90°. Prices range from $6 s^{\prime} 9 \mathrm{~d}$ each for a single wafer switch to 24 s each for a six waffer assembly-in quantities of 500 . Lorlin Electronic Co. Ltd, Billingshurst, Sussex.
WW306 for further details

200W Heatsink Resistors

C.G.S. have now increased the HS range of aluminium housed, power wirewound resistors to include 100 and 200 W sizes. The HSC 100 and HSC200 are designed for direct chassis attachment and are

under half the physical size of existing highwattage vitreous resistors of equivalent power rating. Resistance values are available between 0.1Ω and $50 \mathrm{k} \Omega$. The C.G.S. Resistance Co. Lid, Marsh Lane, Gosport Street, Lymington, Hants.
WW307 for further details

Microwave Aerial Feed

A 2-channel monopulse aerial feed which operates over the range 1,425 to 2,300 MHz is now available from Microwave International. It is suitable for exciting nearly any size of parabolic reflector. Sidelobe levels of less than -22 dB have been achieved for both sum and difference
channels over the full frequency band thereby minimizing ground reflections. Other main specifications are: impedance 50Ω coaxial, null depth 40 dB min.. v.s.w.r. 2 max., sum channel axial ratio 2 dB max., and sum/difference isolation 35 dB max. The unit weighs less than 3.18 kg and will handle 50 W . Gain is $26-30 \mathrm{~dB}$ and beamwidth 7-5 . Microwave International (U.K.) Ltd, 33-37 Cowleaze Road, Kinston-upon-Thames, Surrey.
WW303 for further details

Miniature Tantalum Capacitors

A range of miniature tubular sintered-anode tantalum capacitors has been introduced by Sprague. They are designed for operation over the temperature range $-55^{\circ} \mathrm{C}$ to

$+85^{\circ} \mathrm{C}$ without voltage derating, and are protected against electrolyte leakage and lead breakage. Sprague Electric (U.K.) Ltd., Sprague House, 159 High Street, Yiewsley, West Drayton, Middx.
WW 314 for further details

TV Boost Amplifier

A wide-band TV boost amplifier with a 12 dB gain and a complementary power unit are introduced by Teleng. The amplifier, type SX5341, is fitted to the aerial masthead to boost aerial output in areas of low signal strength. It receives its power from the separate power unit, type SX5342, which can be installed in any convenient position where a mains supply is available. The screened transistor amplifier has separate input circuits for u.h.f. and v.h.f. signals, which are then diplexed together by low-loss filter sections. The v.h.f. input circuit incorporates two filter traps covering the 70 to 170 MHz band which can be tuned to reduce the effect of interfering signals. The units each measure $136 \times 96 \times$ 54 mm . Teleng Lid, South Ockendon, Essex.
WW 315 for further details

U.H.F. Wired TV Amplifier

A solid-state u.h.f. amplifier, in the TA900 series, by Thorn Bendix, is available with gains of 19 dB or 38 dB and can be a.c. or d.c. powered. The amplifier module has a bandwidth of $470-860 \mathrm{MHz}$ and offers a high output with low noise level. Input and output impedances are 75Ω. Operating from 12 V d.c., the TA901 has a gain of $19 \mathrm{~dB} \pm 1 \mathrm{~dB}$ and the TA902 a gain of $38 \mathrm{~dB} \pm 2 \mathrm{~dB}$; power requirements are 40 mA and 80 mA respectively. Of the mainsoperated units the TA911 and the TA912 have similar gains but power requirements

Iuropes bigatrellon aresillgoingstions

You're in excellent company with these general purpose instruments, they've just passed their 20,000th sale.
Understandable when you consider their price performance.

The 1420 D.V.M.

$2.5 \mu \mathrm{~V}-1000 \mathrm{~V}$
120 dB noise rejection
0.05\% accuracy

33 conversions per sec
$5000 \mathrm{M} \Omega$ input resistance

The 1400 Scope

Large, bright display 9 modules to choose from for your 'tailor-made' spec. Choice of 3 amplifiers, including differential. 3 time bases, including sweep delay.
An X-Y plotter and custom blanks.

Post the magazine's reply-paid card and we'll send you our data sheet of full details.

are 5 W and 7 W a.c. respectively. The TA900 series amplifiers provide companions to the existing TA 200 and TT 100 series, in that together they form a complete system suitable for the distribution of u.h.f. and v.h.f. signals at fundamental frequen cies, in blocks of flats and small estates. The d.c. units TA 901 and TA902 can be powered from the companion TA200 or TT 100 units. Thorn Bendix Ltd, Industrial Electronics Division, Beech Avenue, New Basford, Nottingham NG7 7JJ.
WW 313 for further details

Logic-state Indicator

An electronic device, in custom hybrid form, which gives visual indication of the state of binary logic circuits is announced by Newmarket Transistors. This device uses a gallium phosphide electroluminescent diode attached to a thick film hybrid microcircuit. It has three leads and is encapsulated within maximum

dimensions of 5 mm . The circuit contains one transistor, one diode and two resistors and is designed to operate from a $5-\mathrm{V}$ $4-\mathrm{mA}$ supply. It indicates logic states of "O" (0.5 V lamp off) and "1" (2.5 V lamp on) with input currents of $5 \mu \mathrm{~A}$ and $30 \mu \mathrm{~A}$ respectively. Newmarket Transistors Ltd, Exning Road, Newmarket, Suffolk.
WW 317 for further details

Moulded Power Resistors

The PM range of wirewound miniature resistors from the C.G.S. Resistance Company, provides low resistance values down to 0.05Ω in four wattage ratings$3.5,7,10$ and 14 W . The units have small, insulated bodies and tolerances down to $\pm 1 \%$. Prices are from 1s 7d each. The C.G.S. Resistance Company Limited, Marsh Lane, Gosport Street, Lymington, Hampshire SO4 9YQ.
WW325 for further details

C.C.TV Monitors

A new range of closed-circuit TV monitors are being produced by Cotron Electronics with most of the components mounted on p.c. boards. This allows for easy servicing by replacing boards, and also enables boards to be sold as separate units for incorporation in custom-built display

cabinets. A range of c.r.ts from 280 to 610 mm , with 70,90 or 110° deflection can be accommodated provided the e.h.t. required is 16 kV and the neck diameter 28 mm . The standard unit is based on a $280-\mathrm{mm}$ c.r.t. It is constructed of aluminium with the two main printed boards hinged on either side of the unit. The front panel is removable and the c.r.t. can be withdrawn through the front. The only front panel controls are 'contrast', 'brightness' and 'on/off. Two versions are available-for 625 -line 50 field $/ \mathrm{sec}$ and 525 -line 60 field $/ \mathrm{sec}$. Signal inputs required are 0.5 2 V video, composite or non-composite, positive-going, and $10 \mathrm{mV}-2 \mathrm{~V}$ synchronizing, negative-going. Frequency response is -3 dB at $8 \mathrm{MHz}(-3 \mathrm{~dB}$ at 10 MHz if required). Geometry and linearity is less than 2% from ideal. Line synchronization incorporates flywheel lock with a hold-in range of $\pm 1 \mathrm{kHz}$, and a black-level clamp is used in the form of a gated d.c. restorer. The monitor in its standard form measures $245 \times 315 \times 305 \mathrm{~mm}$ and weighs 8.5 kg . Price $£ 155$. Cotron Electronics Ltd, 12 Harecroft Crescent, Sapcote, Leicester. WW 322 for further details

Waveguide Balanced Mixer

A waveguide balanced microwave mixer which the makers call the Micromode Mixer is available from Micro Metalsmiths, in either brass or aluminium alloys. It is obtainable in the frequency ranges $9-10 \mathrm{GHz}$, v.s.w.r. 2 (max), or $9.2-9.6 \mathrm{GHz}$, v.s.w.r. 1.7 (max). Isolation is $20 \mathrm{~dB}(\mathrm{~min})$. The device measures 49 mm across the flanges which are situated at 180° from each other, with the crystals and mixing strip mounted between them Although basically broad-band, the mixer can be optimized electrically for better v.s.w.r. over restricted bandwidths within the complete waveguide band. Micro Metalsmiths Ltd, Kirby Moorside. York YO6 6DW
WW 320 for further details

Low-cost I.C. Amplifiers

Motorola Semiconductors have announced a range of low-cost integrated circuits for the consumer-equipment field. Known as MFC units, these plasticencapsulated devices use smaller chips and contain fewer circuit elements than the professional-equipment range of i.cs. They
also have wider pin spacing to make them suitable for the printed-circuit boards used in consumer products. The first two devices in the range to be introduced are a low-power audio amplifier and a wide-band amplifier. Type MFC4000, is a 250 mW a.f. amplifier with a low total harmonic distortion (typically, 0.7\% at 50 mW output) and is designed for pocket radio receivers. Contained in a four-lead package, it includes six transistors, three diodes and five resistors and requires no output transformer to match to a $16-\Omega$ load. The input sensitivity is 15 mV r.m.s. for 50 mW output. It requires a $9-\mathrm{V}$ d.c. supply and the quiescent current is 3.5 mA . The second unit, type MFC4010, is a high-gain (60 dB) wide-band $(100 \mathrm{~Hz}$ to $4 \mathrm{M} \mathrm{Hz},-6 \mathrm{~dB}$ points) amplifier that could

be used either as a general-purpose a.f. amplifier or as an i.f. amplifier at 465 kHz . Typical output noise is 1 mV r.m.s. Maximum power supply potential is 18 V and typical current drain is 3 mA . This i.c. contains three transistors and five resistors. Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx.
WW 321 for further details

Mobile Communication Aerial

The ASP629 whip aerial from Antenna Specialists for vehicle mounted v.h.f. communciation systems offers 2.5 dB gain relative to a $\frac{1}{-}$-wave aerial. It consists of a stainless steel whip and matching transformer assembly. The frequency range is $130-174 \mathrm{MHz}$, and interference suppression ratio better than 6 d B relative to $\frac{1}{4}$-wave aerial. The mounting hole required is $\frac{3}{4}$ in diameter. No access is required to inside of car. The overall length at 170 MHz is 1 metre. The price is $£ 3.6 .0$. Antenna Specialists UK Ltd, 66 Bolsover Street, London W.1.
WW308 for further details

Instant P.C. Boards

What are called Bishop Circuit Zaps are pre-etched, pressure-sensitive, copper component patterns pads, and conductor paths designed to eliminate most of the conventional processes in prototype circuit development. They comprise 28 gm copper on 0.6 mm glass epoxy film backed by a pressure-sensitive adhesive. This enables printed wiring boards and test circuits to be made directly from the
component layout in one operation. It can be laid down on a standard epoxy p.c. base board in the same manner as pressure-sensitive drafting aids, and adjusted until the design matches the schematic drawing. Holes are then drilled for inserting terminal stakes which requires the use of a special spring-loaded insertion tool and anvil. Holes for component insertion are drilled in the normal manner. Free samples are obtainable from the supplier: Oswald E. Boll, 4a Commercial Road, Woking, Surrey.
WW $\mathbf{3 2 3}$ for further details

Miniature Electrolytic Capacitors

A new design of miniature electrolytic capacitor is announced by ITT. The capacitors, coded Type EN 12.35 cover voltage ranges from 6.3 to 50 V d.c. and capacitances from 0.47 to $1000 \mu \mathrm{~F}$. They

are fitted with insulating sleeves which, together with the single-ended design, allow close arrangement on printed circuit boards. Temperature rating is from -25° to $+85^{\circ} \mathrm{C}$. ITT Components Group Europe, Capacitor Product Division, Brixham Road, Paignton, Devon.
WW307 for further details

Trimmer Capacitors

Polar announce two new additions to their range of trimmers. The $\mathrm{S} 5801 / 8$ is a vertically mounted printed circuit trimmer with a capacity up to 15 pF and the S5801/9 a horizontally mounted version of the same trimmer. Both have a low temperature coefficient and are suitable for u.h.f. applications. Wingrove \& Rogers Ltd, 95b High Street, Great Missenden, Buckinghamshire.
WW 318 for further details

Current Source

Keithley Instruments has introduced model 225 current source which provides a predetermined amount of current that will not vary more than $\pm 0.005 \%$ of full range, despite a wide variation of operating conditions. It will automatically establish any output terminal voltage necessary to maintain the chosen output current, from 10^{-7} to $10^{-1} \mathrm{~A}$ within the compliance voltage range, which may be selected from ± 10 to $\pm 100 \mathrm{~V}$. If the

voltage necessary to maintain the desired current level exceeds the chosen compliance limit, the 225 automatically changes its operating mode from constant-current to constant-voltage, thereby protecting voltage-sensitive loads. A light on the front panel signals that this has occurred. For making precise dynamic measurements, an external a.c. signal generator can be conveniently used to modulate the current output by means of a transformer-coupled input on the rear panel. Applying a $10-\mathrm{V}$ r.m.s. sinewave at a frequency of 50 Hz would produce 40% modulation peak-to-peak, decreasing to 8% modulation at 500 Hz . This arrangement of superimposing modulation on a precise d.c. bias can simplify measurement of forward current-voltage characteristics and other parameters of semiconductors. An output current range switch on the front panel selects milli-, micro-, or nano-ampere ranges. Output current value within these ranges is selected by means of three decade switches, which provide a three-digit in-line display of the value selected. A resolution of 0.02% is provided by a vernier trim knob. A polarity selector switch on the front panel eliminates changing leads to reverse output polarity, a feature which makes floating unnecessary in many applications. When desirable the output can be floated up to $\pm 500 \mathrm{~V}$ off earth. Stable to 0.02%, output current provided is regulated to within 0.005% of full range, from no-load to full-load on the 10^{-1} to 10^{-6} ampere range, $\pm 0.05 \%$ on the 10^{-7} ampere range. A noise level less than 0.01% of full range reduces the possibility of extraneous signal generation. Model 225 weighs 3.5 kg and measures $140 \times$ $220 \times .255 \mathrm{~mm}$. Operation is from $105-125$ and $210-250 \mathrm{~V} 50-60 \mathrm{~Hz}$ a.c. mains. Price in America $\$ 595$. Keithley Instruments Inc. 28775 Aurora Road, Cleveland, Ohio 44139 , U.S.A.
WW332 for further details

Differential-input Op. Amp.

Three new chopper-stabilized amplifiers from Burr-Brown combine a differential input with low voltage drift, low input current and long term d.c. level stability. The three versions, $3354 / 25,3355 / 25$ and $3356 / 25$ feature respectively, a voltage drift of $0.2 \mathrm{~V}, 0.5 \mathrm{~V}$ and $1 \mathrm{~V} / \mathrm{deg} \mathrm{C}$ (max) and input bias currents of 20,50 and 50 pA (max). Other features include high open loop gain and common mode
rejection. These are typically 140 dB at d.c. and 100 dB up to 100 Hz and are two parameters which combine to give linear amplification in non-inverting circuits. Output is $\pm 10 \mathrm{~V}$ d.c. at $\pm 5 \mathrm{~mA}$. Minimum full-power response is 100 kHz and minimum unity gain bandwidth is 3 MHz . Input impedance for common mode signals is typically $10^{13} \Omega$. U.K. distributors, Fluke International Corporation, Garnett Close, Watford, Herts. WD2 4TT.
WW319 for further details

Instrumentation Recorder

It has been announced that the new Tandberg Series 100 instrumentation tape recorder will be marketed in the U.K. by Farnell Instruments. The recorder features 4 channels of i.r.i.g. standard f.m. recording on $\frac{1}{4}$ in. tape at speeds of $7 \frac{1}{2}$, $3 \frac{3}{8}$ and $1 \frac{7}{8} \mathrm{in} / \mathrm{sec}$. Signal-to-noise ratio at $7 \frac{1}{2} \mathrm{in} / \mathrm{sec}$ is better than 48 dB . Although figures for flutter are claimed to be low,

they can be further improved with electronic flutter compensation. Channel 4 has three modes of operation: data only, voice only and data interrupted by voice. A useful built-in feature is a c.r.t. monitor which displays the deviation of all four channels simultaneously and facilitates selection of the appropriate input range. The instrument weighs 11.3 kg and measures $330 \times 240 \times 270 \mathrm{~mm}$. Farnell Instruments Ltd, Sandbeck Way, Wetherby. Yorks, LS 22 4DH.
WW331 for further details

Reed Microswitch

Long operating life, high switching frequency and accuracy are features claimed for a new type of microswitch with hermetically sealed reed contacts. Endurance tests, say the makers, have revealed a service life of over 100×10^{6} switching cycles, a switching frequency of up to 50 Hz and a repetitive accuracy of better than 0.01 mm . The reed contacts are sealed in a glass capsule filled with inert gas and the switch is housed in a glass fibre reinforced synthetic resin. The unit, designated FBR-Robo 1, weighs 14 gm and it can be fastened by screws in any position. Voltage rating is either 50 or 380 V a.c. or d.c. and current rating is 0.5 A . Switching power rating is 10 W
(12VA) and maximum initial contact resistance $200 \mathrm{~m} \Omega$. R. C. Knight Ltd., 20 Solent Avenue, Lymington, Hants, SO4 9SD.
WW 329 for further details

Cable Identity Tester

Information Computer Systems Ltd, have announced a new instrument designed to save time and cost whenever complex cable forms or harnesses are to be checked or assembled. Immediate identification of any single wire in a group of up to 999 wires is claimed, the wire identity being displayed by numbers. Variations of the instrument include models for up to 99 wires, models expansible in 100 -wire increments up to 999 wires, and

self-powered versions for use inside aircraft or where mains supplies may not be available. The instrument is not affected by cable capacitance, resistance, or inductance, and no damage can be caused to low-power components which are joined to the wires under test. Information Computer Systems Ltd, Mill Street, Crewe, Cheshire.
WW 328 for further details

Noise Generator

Model NS 10 has been added to the range of solid state random noise generators from ADM Electronics. Random noise is produced in the band $300 \mathrm{kHz}-1,000 \mathrm{MHz}$. Over the range $1-50 \mathrm{MHz}$ the noise is within $\pm 0.3 \mathrm{~dB}$. Operation can be from $9-24 \mathrm{~V}$ supply and at 9 V the excess noise ratio is 43 dB . Consumption is less than 40 mW . Voltage sensitivity is $0.6 \mathrm{~dB} / \mathrm{V}$ and the source impedance 37Ω. The unit is primarily intended for in-service communications receiver tests and as a primary source for video test equipment. It is available in small quantities for $£ 2$. ADM Electronics, P.O. Box 3, Merthyr Tydfil, Glam.

WW324 for further details

D.I.L. Reed Relay

A reed relay mounted in a 14-pin dual-in-line package is announced by ERG. Designed specifically to have fast closure with low bounce, the relay's 5 V 9 mA operating coil is suitable for low-output i.c. logic. Typical operating time is $300 \mu \mathrm{~s}$. Dielectric strength is 200 V d.c. and insulation resistance (coil to contact) $10^{10} \Omega$. Optional variations are

available. ERG Industrial Corporation Ltd, Luton Road, Dunstable, Beds.
WW327 for further details

Electronic Isolator/Coupler

An electronic device for low-level data handling, where it is required to couple systems working at different voltage levels, is being offered by Cole Electronics. It is the Rafi isolator/coupler providing d.c. separation of circuits which have a level difference of 300 V d.c. (in a vacuum encapsulated version, up to $2,000 \mathrm{~V}$ a.c.). Input is applied to an iron-cored coil with a magneto-resistor placed in the air-gap. The magneto-resistor is connected between base and emitter of a transistor which provides the outputs. When the coil is energized the magnetic field produced in the air-gap causes the resistance of the magneto-resistor to increase. The transistor base will become more positive and the transistor will conduct. The coil, magneto-resistor and transistor are contained in a case with connecting wires brought out through the bottom at 2.5 mm spacing. Units are available with 5,12 or 24 V coils. Output current is 50 mA (max) and output voltage $3-30 \mathrm{~V}$. Rise time can be $0.2-0.5 \mathrm{~ms}$ and delay time $0.3-0.4 \mathrm{~ms}$ depending on the configuration of input and output circuits. Cole Electronics Ltd, 7 /15 Lansdowne Road, Croydon, Surrey CR 9 2HB.

WW333 for further details

U.H.F. Portable Transceiver

GEC-AEI (Electronics) have announced their first u.h.f. portable f.m. transceiver for mobile radio which will be available later this year. It is type RC850/TR-P which operates on up to 10 channels in the $450-470 \mathrm{MHz}$ band and is intended to provide a personal communication link instead of the conventional link between base and vehicle. In its portable mode it is provided with re-chargeable batteries, loudspeaker, microphone and aerial, but it can also be slotted into an adaptor in a vehicle when it utilizes the vehicle battery, loudspeaker and aerial. Solid-state circuitry is used throughout and the weight of the transceiver in portable form is about 3.2 kg . ${ }^{\text {. Space }}$ is provided for the addition of selective calling from base to mobile and from mobile to base by coder and decoder modules, either or both of
which may be fitted. The signalling system comprises two single sequential tones. A total of 100 different codes can be handled by the decoder; the coder is able to provide nine different call codes. Channel separation can be 25 kHz with $\pm 5 \mathrm{kHz}$ f.m. deviation or 50 kHz with $\pm 15 \mathrm{kHz}$ deviation. Ambient temperature range is -30 to $+60^{\circ} \mathrm{C}$ or -10 to $+60^{\circ} \mathrm{C}$ (two versions). Transmitter power output is 5 W and receiver a.f. output 1 W with less than 5% distortion. Spurious response better than -80 dB relative to wanted signal. Approximate unit dimensions are $210 \times$ $248 \times 70 \mathrm{~mm}$. GEC-AEI (Electronics) Ltd, Mobile Communications Division Spon Street, Coventry, Warks., CVI 3AZ. WW334 for further details

Single-film Silvered Mica Capacitors

Sprague Electric have introduced single-film silvered mica capacitors which have lead spacings interchangeable with those of conventional ceramic disc capacitors. They permit substitution of stable mica capacitors for various types of ceramic dielectric capacitors when the characteristics of silvered mica dielectric are required for improved circuit stability without the need for complete revision of printed wiring boards. The new capacitors, type 91 M , are available in 45 ratings ranging from $10-680 \mathrm{pF}$ at 500 V .

Graduated case sizes are offered to ensure minimum size and cost in each rating.
Standard capacitance tolerance is $\pm 5 \%$ or $\pm 5 \mathrm{pF}$, whichever is greater. Sprague Electric (U.K.) Ltd. 159 High Street. Yiewsley, West Drayton, Middx.

WW335 for further details

Power Amplifier

An amplifier specially designed for servo-systems or other inductive loads has been announced by Ancom. The encapsulated module, type 40P-1, measures $52 \times 29 \times 16 \mathrm{~mm}$ and is internally protected against transient short-circuits and inductive loads, a.c. or d.c. Supply voltage is $\pm 40 \mathrm{~V}$. Characteristics include input voltage of $\pm 10 \mathrm{~V}$ and output of $\pm 36 \mathrm{~V}$ into 360Ω at

$\pm 150 \mathrm{~mA}$ (max). Open loop gain is 5,000 (R load $=1 \mathrm{k} \Omega$) and closed loop gain 50. Input offset voltage is 5 mV (max) and the c.m.r.r. 1,000. Maximum operating frequency is 5 kHz at full output. Typically the 40P-1 could be used to drive the field coil of a d.c. servo motor where the armature is fed with a constant current and the field coil is driven between $\pm 40 \mathrm{~V}$. Ancom Ltd, Devonshire Street, Cheltenham, Glos. GL50 3LT.
WW326 for further details

Literature Received

For further information on any item include the WW number on the reader reply card

ACTIVE DEVICES

We have received a large amount of literature from Fairchild (U.K.) Ltd. Kingmaker House, Station Rd. New Barnet. Merts. concerned with their range of m.s.i. integrated circuits.

SGS (United Kingdom) Lid, Planar House, Walton St. Aylesbury. Bucks, have produced a large catalogue devoted to integrated circuits which costs 21 s . Digital and linear circuits are included.

We have received the literature listed below from the Semiconductor Divislon, Westinghouse Brake and Signal Company Ltd., 82 York Way, King's Cross, London N. 1.
"High-power ceramic capsule thyristors"
WW429
data sheets for the following capsule thyristors:
Type 342Tx. 540ampsWw430
Type 344Tx. 580amps WW431
Type 358Tx. 775ampsWW432
Type 362Tx. 805amps WW433
Type 364Tx. 845amps WW434
Type 366Tx. 905ampsWW435
"Westinghouse thyristors"WW436
data sheets for thyristors:
Type 71Tx. 250amps WW437
Type 73Tx. 275amps WW438
Type 74Tx. 300amps WW439
Type 80Tx. 325amps WW440
Type 81Tx. 350amps WW44 1
Sprague Electric Company have produced an 88 -page brochure (engineering bulletin 25645) devoted to the $54 \mathrm{H} / 74 \mathrm{H}$ series of t.t.l. logic circuits. The three sections in the publication deal with general design characteristics for reliable system design. electrical characteristics detailing test and limiting conditions. and finally, parameter
measurement information. The brochure may be obtained from SDS (Portsmouth) Ltd. Gunstore Road. Hilsea Industrial Estate. Portsmouth. Hants.

WW442
A short-form catalogie (PG110) published by Pirgo Electronics Inc. describes a range of power transistors capable of handling up to 90A and triacs intended for use up to 250A. The catalogue is available from Sprague Electric (U.K.) Ltd, Sprague House, 159 High Street. Yiewsley. Middlesex

WW443
We have received from Technical Publications Department, R.C.A. Ltd., Sunbury-on-Thames, Middlesex, reprints of two papers by R.C.A. engineers

ST-4150. "MOS dual-gate transistor for U.h.f. applications"

WW444
ST-4128. "RF integrated amplifiers in highpower broadband structures" WW445

The second in a series of application notes being produced by Hivac Lid. Stonefield Way, Ruislip. Middesex. HA4 OJT, is now available. It describes the use of glow diodes in timing circuits, gives performance curves for tungsten filament lamps and describes a sub-miniature neon lamp WW446
A.E.G. Telefunken, Fachbereich Röhren, Vertrieb, 7900 Ulm, Söflinger StraBe 100. West Germany. have available a 486-page data book covering valves, tubes and photo-electric devices WW447

PASSIVE COMPONENTS

"Liquid Crystals and their Applications" is a title of a book available from the Optosonic Press, Box 883, Ansonia Station. New York. N.Y. 10023, U.S.A., at $\$ 12$ per copy. The book contains a bibliography of over 600 entries and descriptions of 25 patents concerned with liquid crystal applications.

A marine aerial catalogue for the h.f. and v.h.f. bands may be obtained from Antenna Specialists U.K. Lid, 66 Bolsoveŕ Street. London W. 1 WW461

Reed relays are the subject of a new catalogue from Electrothermal Engineering Ltd. 270 Neville Road, London E. 7

WW462
A leaflet (MB/4/69) mentioning some of the company's varied products linsulators, sockets. indicators, variable capacitors, programine boards. etc.) may be obtained from Oxley Developments Co. Ltd, Ulverston. Lancs.

WW463
The latest, enlarged, Radiospares Catalogue (April-July 70) is now available. Radiospares. P.O. Box 427, 13-17 Epworth Street. London E.C. 2 . WW464

The following literature is available from Best \& Raynor Ltd. 27 Homesdale Road. Bromley. Kent. Indicator lamp and lampholders by Guest International . WW465 Ten-way rotary thumbwheel switches WW466
"Magnadur magnets for d.c. motors" (TP 1 139) is the title of a 50-page book intended for students. lecturers and designers of small electric motors.

It costs $16 s$ 6d by post from Multard Ltd, Mullard House, Torrington Place, London W.C. 1.

A range of indicator lamps. including one with an arrow-shaped head for mimic diagrams, is described in leaflets (LS5 and LS14) from J.H. Associates Ltd, 1 Church Street, Bishops Stortford, Herts

WW467
Timers, relays etc., are described in a catalogue from Intertechnique Lid., Unit 5, Victoria Road, Portslade, Sussex BN4 $1 \times \mathrm{XQ}$

WW468
Details of a new logic training aid, which uses discrete components on a printed circuit card and miniature wire-ended bulbs are given in a leaflet from Limrose Electronics, Lymm, Cheshire WW479

Supplementary list IIIF of used scientific equipment for sale may be obtained from V.N. Barrett \& Co. Ltd, 1 Mayo Road. Croydon. CRO 2QP. Surrey

WW480
A short-form catalogue of oscilloscopes, a counter/ timer, digital voltmeter and stroboscopes has been produced by SE Laboratories (Engineering) Ltd. North Feltham Trading Estate, Feltham. Middlesex
.WW481
Reference, comparison and measurement instruments, bridges, potentiometers and resistive networks are included in the current Guildline Instrument's condensed catalogue (11-69) which may be obtained from Lyons Instruments Ltd. Moddesdon. Herts

WW482
We have received a price list and leaflets describing the Mk. 2 Norkit system. This is a logic tutor employing discrete components, r.t.I. and solderless interconnections

WW483
A leaflet describing a logic test probe which indicates 0,1 or open circuit has been produced by Electronic Equipment Manufacturers, Bromham, Chippenham, Witts

We have received the following literature from Millbank Electronics. The Square, Forest Row, Sussex.

Catalogue 2520. "Turner microphones"
Leaflet 2570WW485
Leaflet 2570. "Turner balladier microphones"
Leaflet. "Amplifiers for professional use"
Leaflet Lou................................WW487
us."
Leaflet. "Sound mixers"WW489
Leaflet. "Audio modules"WW490
Leaflet. "Sound system accessories". WW491
Nore Microwave, of Southend-on-Sea, Essex. have published iwo data sheets.
Solid state noise generatorsWW492
Noise generator supply
WW493

A new catalogue, bulletin 7501. called "Aírpax Tachometry" describes equipment for speed measurement, sensing and control. Airpax Elec tronics, Seminole Division, P.O. Box 8488, Fort Lauderdale, Florida 33310, U.S.A. WW494

A Kelvin bridge ohmeter for measuring low resistance values is the subject of a leaflet from the Croydon Precision Instrument Company, Hampton Rd, Croydon CR9 2RUWW495

GENERALINFORMATION

The Metrication Board has produced a leaflet "Going Metric-Everyday Units". Metrication Board, 22 Kingsway. London W.C. 2.
"Know How, No.7" from Pye Group (Radio and Television) Ltd, P.O. Box 49. St. Andrews Rd, Cambridge. CB4 1DS, is a guide to servicing Pye single-standard monochrome television receivers fitted with the 169 or 569 chassis WW502

Another book in the "Concept series" is available from Tektronix U.K. Ltd. Beaverton House. P.O. Box 69. Harpenden. Herts. It is called "Vertical Amplifier Circuits" and consists of some 460 pages. The cost is 10 s per copy including postage.

Anew STAR is born

STC announces a new AM VHF version of the STAR Mobile Radio Telephone series.

The new Star AM7 is designed expressly for British VHF bands. It is completely solid state and meets the latest Ministry of Posts and Telecommunications
12.5 kHz specifications. It incorporates the outstanding features that are making the Star UHF range so successful. combining excellent performance with elegant appearance and outstanding speech qualities. Star
mobile equipment has no relays or moving parts.
For more information about the Star AM7 or Star UHF series, post the coupon today.

STC Mobile Radio Telephones Ltd., "New Southgate, London N. 11
Tel: 01-3681200. Telex: 261912.

If it's worth putting across it's worth aShure Microphone

Do yourself a favour.
 And your audience.

Equip yourself with a microphone that lets you be heard
the way you should be heard.
With every word faithfully reproduced.
Every note.
Every subtle shade of sound.
Take your own Shure Microphone with you on every date.
Just as the top stars do.

Communications Receivers

Abridged specifications of some of the equipment on the British market

It being several years since we published a survey of communications receivers we recently sent a questionnaire to some 60 manufacturers and importers. From the replies received we have compiled the following tables showing the main features of over 50 receivers. This information, together with the survey article by Pat Hawker on p. 256 will, we hope, assist readers in the choice of suitable equipment. The list includes only those receivers which are complete in one unit (except for power supplies, in some cases) and which can be continuously tuned. Further details may be obtained by direct application to the appropriate supplier.

Name, Brand and Model	Type of Circuit	Frequency Coverage	Receiving Modes	Input and Output Impedance	Sensitivity and S/N Ratio	Number of Valves and/or Semiconductors	Gain Controls	Country of Origin	Additional Information
astro communication LABORATORY (U.K.) SR-2098 (Standard) from $£ 900$ or SR-2508 (Ruggedized version)	Single, double or triple superheat	$\begin{aligned} & \text { 2MHz-12GHz } \\ & \text { using plug-in tuning } \\ & \text { heads } \end{aligned}$	A.M. c. w. Putse	$\begin{aligned} & 50 \Omega(1 / \mathrm{P}) \\ & \left.\begin{array}{l} 600 \Omega \text { audio } \\ 93 \Omega \text { video } \end{array}\right\} \text { (} \mathrm{O} / \mathrm{P} \text {) } . \end{aligned}$	$0.3 \mu \mathrm{~V}$ at 1 kHz band width to $60 \mu \mathrm{~V}$ at 8 MHz A.M. 10 dB F.M. 21 dB	Typically 75 transistors 20 diodes dependent on modules used	R. F A.F. Video	U.K.	Image rejection 60 dB . Buit-in power supply. Signal strength and runing meters. Modular construction. Battery Pack.
$\begin{aligned} & \text { from £1,100 } \\ & \text { SR-502 } \\ & \text { from } £ 1,000 \end{aligned}$	Double superhet	$\begin{aligned} & 10-500 \mathrm{kHz} \\ & 0.5-30 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { A.M. } \\ & \text { F.M. } \\ & \text { C.W. } \\ & \text { S.S.B. } \\ & \text { Search } \end{aligned}$	As for SR-209B	$\begin{aligned} & 1 \mu V A . M . \text { and F.M. } \\ & 0.3 \mu V \text { S.S.B. } \\ & 0.1 \mu V \text { C.W. } \\ & \text { A.M. } 10 d B \\ & \text { F.M. } 20 \mathrm{~dB} \end{aligned}$	$<$ As for S	SR-2098	U.K.	As for SR-209B. Plus frequency synthesizor with digital readout.
aveley electaic itto. Rohde \& Schwarz EK 47 (Price on request)	Double superhat	$10 \mathrm{kHz}-30 \mathrm{MHz}$	$\begin{aligned} & A . M \\ & C . W \end{aligned}$	$\begin{aligned} & 50 \Omega \text { (I/P) } \\ & 600 \Omega(0 / P \text { line }) \\ & 5 \Omega(0 / / \mathrm{P} . \mathrm{LS} .) \end{aligned}$	$\overline{10 \mathrm{~dB}}$			Germany	B.F.O. "S" meter. Battery/mains supply. Image rej. $>80 \mathrm{~dB}$. I.F., rej. $>80 \mathrm{~dB}$.
$\begin{aligned} & \text { EK } 56 \\ & \text { (Price on request) } \end{aligned}$	Double superter	$10 \mathrm{kHz}-30 \mathrm{MHz}$	$\begin{aligned} & \text { A.M. } \\ & \text { F.M. } \\ & \text { C.W. } \end{aligned}$	As for EK 47	$\begin{aligned} & 2 \cdot 6-8 \mu \mathrm{~V} \\ & 20 \mathrm{~dB} \end{aligned}$			Germany	Aerial E.M.F. meter. Variable I.F. bandwidth, A.G.C. $<2 \mathrm{~dB}$ change from $1 \mu \mathrm{~V}-100 \mathrm{mV}$ aerial E.M.F. Image rej $>80 \mathrm{~dB}$. I.F. rej. $>80 \mathrm{~dB}$. Battery/mains. supply.

Name, Brand and Model	Type of Circuit	Frequency Coverage	Receiving Modes	Input and Output Impedance	Sensitivity and S/N Ratio	Number of Valves and/or Semi- conductors	Gain Controls	Country of Origin	Additional Information
Avalay Electric Lto. cont									
HFH (Price on request)	Double superhet	$100 \mathrm{kHz}-30 \mathrm{MHz}$	A.M.	$60 \Omega(1 / P)$ $4 \mathrm{k} \Omega$ (phone) 15Ω (L/S) $500 \mathrm{k} \Omega$ (recorder)	0.14 V	13 Valves 10 Transistors		Germany	B.F.O. Crystal cal. 500 kHz . Battery/mains supply. Variable I.F. bandwidth. Meter. I.F. rej. > 50dB.
ESUM (Price on request)	Double superhet Triple superhet	$\begin{aligned} & 25-1,300 \mathrm{MHz} \\ & \text { (plug-in units) } \end{aligned}$	$\begin{aligned} & \text { A.M. } \\ & \text { F.M. } \end{aligned}$	$50 \Omega(1 / P)$ $4 \mathrm{k} \Omega$ (phone) 15Ω (L/S) $250 \mathrm{k} \Omega$ (recorder)	$\begin{aligned} & 1 \mu \mathrm{~V} \\ & >6 \mathrm{~dB} \end{aligned}$	32 Valves 36 Semiconductors		Germany	Crystal freq. cal. 10 MHz . Meter $0-20 \mathrm{~dB}$ and $0-80 \mathrm{~dB}$. Battery/mains supply. Variable I.F. bandwidth. Image rej. $>50 \mathrm{~dB}$. I.F. rej. $>90 \mathrm{~dB}$. Built-in L.S.
$\begin{aligned} & \text { UR } 1 A \\ & £ 24 \end{aligned}$	Superhet	$550 \mathrm{kHz}-30 \mathrm{MHz}$	$\begin{aligned} & \text { A.M. } \\ & \text { S.S.B. } \end{aligned}$	$\begin{aligned} & 75 \Omega(1 / P) \\ & 8 \Omega(\mathrm{O} / \mathrm{P}) \end{aligned}$				Japan	Built-in P.U. or 12V battery operated. Built-In L.S. "S" meter. Telescopic aerial. Bandspread tuning.
Lafayette HA 600 £45	Superhet	$\begin{aligned} & 150-400 \mathrm{kHz} \\ & 550 \mathrm{kHz}-30 \mathrm{MHz} \end{aligned}$	A.M. C.W. S.S.B.	$50-400 \Omega(1 / P)$ 4,8 or 500Ω (O / P)	$\begin{aligned} & 1 \mu \mathrm{~V} \\ & 10 \mathrm{~dB} \end{aligned}$	19 Semiconductors	$\begin{aligned} & \text { A.F. } \\ & \text { R.F. } \end{aligned}$	Japan	Built-In P.U. or 12 V battery operated. "S" meter. Mechanical filter. Noise limiter. Bandspread tuning.
HA 800 £57 10s.	Double superhet	$\begin{aligned} & 3 \cdot 5-4 \mathrm{MHz} \\ & 7-7 \cdot 3 \mathrm{MHz} \\ & 14-14 \cdot 35 \mathrm{MHz} \\ & 21-21 \cdot 45 \mathrm{MHz} \\ & 28-29 \cdot 7 \mathrm{MHz} \\ & 50-54 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { A.M. } \\ & \text { C.W. } \\ & \text { S.S.B. } \end{aligned}$	$50 \Omega(1 / P)$	$\begin{aligned} & 1 \mu V \\ & 10 \mathrm{~dB} \end{aligned}$	24 Semiconductors	$\begin{aligned} & \text { A.F. } \\ & \text { R.F. } \end{aligned}$	Japan	Built-in P.U. or 12 V battery óperated. "S" meter. Mechanical filters. Noise limiter. Crystal cai. Bandspread tuning.
$\begin{aligned} & \text { PF } 60 \\ & \text { £ } 37 \text { 10s. } \end{aligned}$	Superhet	$152-174 \mathrm{MHz}$	F.M.	$50 \Omega(1 / P)$	$\begin{aligned} & 0.7 \mu V \\ & 20 \mathrm{~dB} \end{aligned}$	27 Semiconductors		Japan	Built-in P.U. or 12 V battery operated. Built-in L.S. Squelch control. Facilities for crystal control.

$\begin{aligned} & \text { 9R59DE } \\ & \text { E41 10s. } \end{aligned}$	Superhet	$\begin{aligned} & 550 \mathrm{kHz}-30 \mathrm{Mhz} \\ & \text { (4 ranges) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { C.W. } \\ & \text { S.S.B. } \end{aligned}$	4-8 Ω ($0 / \mathrm{P}$)	$6-18 \mathrm{~dB}$ for 10 dB S/N ratio	8 Valves	$\begin{aligned} & \text { A.F. } \\ & \text { R.F. } \end{aligned}$	Japan	Built-in P.U. "S" meter. Noise limiter Bandspread tuning.
JR500SE ¢69 10s.	Double superhet	Amateur bands between 3.5 and $30 \mathrm{MHz}(600 \mathrm{kHz}$ width	A.M C.W. S.S.B	$\left.\begin{array}{l} 8 \Omega \\ 500 \Omega \end{array}\right\}(0 / P)$	$9.5 \mu \mathrm{~V}$ for 10 dB	$\begin{aligned} & \hline 7 \text { Valves } \\ & 2 \text { Transistors } \end{aligned}$	$\begin{aligned} & \text { A.F. } \\ & \text { R.F } \end{aligned}$	Japan	Built-in P.U. "S" meter. Crystal osc. Crystal B.F:O. Bandspread tuning.
JR 310	Double superhet	<	-	500SE	\rightarrow	6 Valves 5 Transistors	$\begin{aligned} & \text { A.F. } \\ & \text { R.F. } \end{aligned}$	Japan	Built-in P.U. " S " meter. Crystal osc Crystal B.F.O. Mechanical filter.
BROOKES \& GATEHOUSE Homer Model K Mk2 (Navigation receiver) £84	LT. Superhet	$\begin{aligned} & 160-415 \mathrm{kHz} \text { (1) } \\ & 600-1,650 \mathrm{kHz} \text { (2) } \\ & 1,600-4,150 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { A.M. } \\ & \text { C.W. } \end{aligned}$	$\left.\begin{array}{l} 3.000 \Omega \\ 1.000 \Omega \end{array}\right\}(1 / P)$	$\begin{aligned} & 3 \mu \mathrm{~V} \text { (Band 1) } \\ & 40 \mu \mathrm{~V} \text { (Bands } 2 \text { \& 3) } \end{aligned}$	14 Transistors	A.F.	U.K.	Battery operated. Crystal B.F.O. Expanded scale for radio beacons $(250-350 \mathrm{kHz})$. A.G.C. $<6 \mathrm{~dB} \quad 0 / \mathrm{P}$ for $40 \mathrm{~dB} \mathrm{I} / \mathrm{P}$.
COLLINS RADIO COMPANY 51S-1 £1,250	OF ENGLAND Double superhet Triple superhet	$2-30 \mathrm{MHz}, 200 \mathrm{kHz}-$ 30 MHz with $55 \mathrm{G}-1$ preselector	A.M. C.W. R.T.T.Y	$\left.\begin{array}{l} 50 \Omega(\mathrm{I} / \mathrm{P}) \\ 4 \Omega \\ 600 \Omega \end{array}\right\}(\mathrm{O} / \mathrm{P})$	$0.6 \mu \mathrm{~V}$ (S.S.B. and (C.W.) $3 \mu V(A . M$.	Valve		U.S.A.	nntinued on page

It's revolutionary this receiver! Full search facility and synthesiser setting to 1 in 10^{7} stability.

Racal RA. 1220

Racal-BCC Limited
Bracknell - Berkshire • England Tel: Bracknell 3244 • Telex 84166

1 to 30 MHz Solid state Modular construction Electronic Display $\pm 1 \mathrm{~Hz}$ \square "Racalok" stability of 1 in $10^{7} \square$ Frequency setting:- 100 Hz steps, $\pm 100 \mathrm{~Hz}$ Interpolation and free tuning \square USB/LSB, DSB and CW
Designed to military specifications
Full range of adaptors available.

66

RADIO MASTS AND AERIAL ARRAYS

 COAXIAL CABLE TERMINATING UNITSDesigned for Centre Fed Tx and Rx Dipole Arrays.

MANUFACTURERS OF:
Aerial Systems for M.F. \& H.F. range including:
Centre Fed Half Wave Dipoles.
Delta Matched Dipoles.
Folded Dipoles.
Broad Band Cage Monopoles.
Rhombic Systems.
Quadrant Dipoles.
Inverted "V" Arrays.
Terminated Folded Dipoles.
M.F. "T" \& "L" Aerials.

Vertical Radiators.
Radio Masts:
Portable Tubular. Permanent Tubular. Permanent Lattice. Dipole Centre Connectors. Transmission Line Equipment. Terminating Units.
Lead-in-Insulator Panels.
Coaxial and Wire Feeder Routes.
SUPPLIERS TO:
Government Ministries, Crown Agents, principal manufacturers of Telecommunications equipment and overseas governments and administrations.

UNDER IMMEDIATE DEVELOPMENT:

An extended range of antenna mounted terminating units incorporating matching transformers balanced/unbalanced 75-50 $2,600-50 \Omega, 600-75 \Omega$, for reception and low power transmission.
Also available: Portable half wave antennas designed for use with the modern HF transceiver. These antennas use the CCJ/2 centre connector with Terylene/Copper elements calibrated in $\frac{1}{2} \mathrm{Mc} / \mathrm{s}$. spacing to frequency nominated. Supplied with coaxial cable and fitted required type of plug.

SOUTH MIDLANDS CONSTRUCTION LIMITED

S. M. House, Osborne Road, Totton, Hants.

Telephone: Totton 2785/4930

HOMER

A miniature, internally-powered hermetically-sealed marine communications receiver providing for DF and general reception in the frequency range $150-4.150$ kHz . Through the use of FET's and crystal filters, this receiver has the exceptionally high performance figure on M.F. C.W. reception of 2 microvalts for 20 dB signal : noise ratio. For full details, write to the designers and manufacturers:-

BROOKEES \& GATEFOUSE LTTD
Bath Road, Lymington, Hants. Tel: Lymington 4252 and a branch in the U.S.A.
BROOKES \& GATEHOUSE INC.
154 East Boston Post Road, Mamaroneck. New York 10543

ILIFFE BOOKS COLOUR TELEVISION

 VOL. I: PRINCIPLES AND PRACTICEP. S. CARNT, B.Sc.(Eng.), A.C.G.I., C.Eng., F.I.E.E., Leader of Colour T.V. Group Laboratories, R.C.A. Ltd., Zurich, and G. B TOWNSEND, Ph.D., B.Sc., F.Inst.P., A.K.C., A.M.I.B.M., C.Eng., F.I.E.E., Head of Engineering Research, Thames Tolevision Ltd.

A working knowledge of black and white television is assumed, and while the treatment is largely non-mathematical, the more advanced mathematics are given in the appendices. Most aspects of transmission and reception are discussed, though the emphasis is on the latter. For the service engineer, chapters on fault-finding have been added which illustrate the practical approach. Block diagrams and full circuits are included.

CONTENTS
Colour Measurements. Colour Picture Tubes. Cameras and Film Scanners. Transmitter Coding. Specification in N.T.S.C. Systems. Transmitter Coding Circuits. Introduction to Colour Receiver Deslgn. Colour Receiver Amplifiers. Colour Receiver Decoding Circuits. Colour Receiver Reference Frequency Generators. Operation of the Shadow Mask Tube. Colour Receiver Test Equipment and Performance Measurements. Receiver Installation. Colour Receiver Fault Finding. Monochrome Reception on N.T.S.C. Signals. Shortcomings of N.T.S.C. Systems. Appendices.

487 pp. 233 illustrations. 16 pp. plates - 8 in colour. 85 s . net, 87 s . by post.
obtainable from your bookseller or:

THE BUTTERWORTH GROUP

Butterworths-Iliffes-Newnes
88 KINGSWAY LONDON WC2
01-405 6900

Name, Brand and Model	Type of Circuit	Frequency Coverage	Receiving Modes	lnput and Output Impedance	$\begin{aligned} & \text { Sensitivity } \\ & \text { and } \\ & \text { S/N Ratio } \end{aligned}$	Number of Valves andlor Semiconductors	Gain Controls	Country of Origin	Additional Information
Eddystone Radio Ltd continuad									
990 S (Price on request)	Superhet	$\begin{aligned} & 230-510 \mathrm{MHz} \\ & 470-870 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { A.M. } \\ & \text { F.M. } \end{aligned}$	$\left.\begin{array}{l}\left.\begin{array}{l}75 \Omega \\ \text { Low Z I.F. } \\ 3 \Omega \text { A.F. } \\ 150 \Omega \text { line } \\ 600 \Omega \text { line } \\ 1 \mathrm{k} \Omega \text { video } \\ \text { Low Z I.F. } \\ \text { Low } \mathrm{F} \text { phone }\end{array}\right\}(1 / P) \\ \end{array}\right\}(O / P)$	$<5 \mu \mathrm{~V}$ for 10 dB at 1 MHz bandwidth (A.M.) $<4 \mu \mathrm{~V}$ for 10 dB at 1 MHz bandwidth (F.M.)	42 Semiconductors	A.F. I.F. R.F.	U.K.	Built-in P.U. of 12 V battery operated. " S " meter with log or linear scale. Image rej. $>50 \mathrm{~dB}$. A.G.C. characteristic, $<12 \mathrm{~dB}$ variation of O / P for $1 / P$ variation of 70 dB above $10 \mu \mathrm{~V}$.
990R (Price on request)	Superhet	$\begin{aligned} & 27-240 \mathrm{MHz} \\ & \text { (4 ranges) } \end{aligned}$	$\begin{aligned} & \text { A.M. } \\ & \text { F.M. } \\ & \text { C.W. } \end{aligned}$	$\left.\begin{array}{l}75 \Omega(1 / P) \\ \left.\begin{array}{l}\text { Low } Z \text { I.F. } \\ 1 \mathrm{k} \Omega \text { video } \\ 3 \Omega \text { A.F. } \\ 150 \Omega \text { line } \\ 600 \Omega \text { line } \\ \text { Low } Z \text { phone }\end{array}\right\}(0 / P), \\ \end{array}\right\}$	$<5 \mu \mathrm{~V}$ for 10 dB at 30 kHz bandwidth	52 Semiconductors	$\begin{aligned} & \text { A.F. } \\ & \text { I.F. } \\ & \text { R.F. } \end{aligned}$	U.K.	Built-in P.U. or 12 V battery operated. " S " meter. Built-in L.S. Crystal cal. Crystal filter to suit $12.5 ; 25$ or 50 kHz spacing. I/P fo: ext. osc. Provision for crystal control. Image rej. 50dB up to $200 \mathrm{MHz}, 45 \mathrm{~dB}$ above 200 MHz .
1830/1 (Price on request)	Superhet Double superhet	$\begin{aligned} & 120 \mathrm{kHz}-30 \cdot 3 \mathrm{MHz} \\ & \text { (} 9 \text { ranges) } \end{aligned}$	$\begin{aligned} & \text { A.M. } \\ & \text { C.W. } \\ & \text { S.S.B. } \end{aligned}$	$\left.\begin{array}{l}75 \Omega(1 / P) \\ 3 \Omega A . F \\ 150 \Omega \text { line } \\ 600 \Omega \text { line } \\ \text { Low } Z \text { phone }\end{array}\right\}(0 / P)$	$3 \mu \mathrm{~V}$ for 15 dB at 3 kHz bandwidth	53 Semiconductors	$\begin{aligned} & \text { A.F. } \\ & \text { I.F. } \\ & \text { R.F. } \end{aligned}$	U.K.	Built-in P.U. or 12 V d.c. supply. Built-in L.S. "S" meter. Crystal cal. Provision for crystal-controlled channels. Image rej. $50 \mathrm{~dB}-70 \mathrm{~dB}$.
EC 10 Mk 1 (Price on request)	Superter	$\begin{aligned} & 550 \mathrm{kHz}-30 \mathrm{MHz} \\ & \text { (} 5 \text { ranges) } \end{aligned}$	$\begin{aligned} & \text { A.M. } \\ & \text { C.W. } \end{aligned}$	$\left.\begin{array}{l} 75 \Omega \\ 400 \Omega \\ \text { Low } Z \text { phone (O/P) } \end{array}\right\}(1 / P)$	$5 \mu \mathrm{~V}$ for 15 dB above 1.5 MHz $15 \mu \mathrm{~V}$ for 15 dB below 1.6 MHz	13 Semiconductors	$\begin{aligned} & \text { A.F. } \\ & \text { R.F. } \end{aligned}$	U.K.	Battery operated, mains P.U. optional. Bulit-in LS. Image rej. 50 dB at $2 \mathrm{MHz}, 20 \mathrm{~dB}$ at 18 MHz .
EC 10 Mk 2 (Price on request)	Superhet	As Mk 1	As Mk 1	$\left.\begin{array}{l}75 \Omega \\ 400 \Omega \text { record } \\ 5 \mathrm{k} \Omega(1 / P) \\ \text { Low } Z \text { phone }\end{array}\right\}(O / P)$	As Mk 1	15 Semiconductors	$\begin{aligned} & \text { A.F. } \\ & \text { R.F. } \end{aligned}$	U.K.	EC 10 Mk 2 and EC 10 A Serias differ from the Mk 1 by the addition of (a) fine tuning control, (b) carrier level meter, (c) standby switch.
EC 10 A Series (Price on request)	Superhet	$\begin{aligned} & 330-550 \mathrm{kHz} \\ & 1.5-30 \mathrm{MHz} \\ & \text { (5 ranges) } \end{aligned}$	$\begin{aligned} & \text { A.M. } \\ & \text { C.W. } \end{aligned}$	As Mk 1	As Mk 1	15 Semiconductors	$\begin{aligned} & \text { A.F. } \\ & \text { R.F. } \end{aligned}$	U.K.	EC $10 / \mathrm{A} / 2$ RM has two additional speakers for ship intercom system. Additional information otherwise as for Mk 1.

MARCONI COMMUNICATIO H 2310 "Argo" (Price on request)	N SYSTEMS LTD. Superher Double superhet Triple superhet	$10 \mathrm{kHz}-30 \mathrm{MHz}$	$\begin{aligned} & \text { A.M. } \\ & \text { C.W. } \\ & \text { S.S.B. } \end{aligned}$	$\begin{aligned} & 75 \Omega(1 / P) \\ & 3 \text { or } 600 \Omega(0 / P) \end{aligned}$	$\begin{aligned} & 1 \mu V \\ & 10 \mathrm{~dB} \end{aligned}$		U.K.	
H 2001 "Hydrus" (Price on request)	Triple superhet	$1.5-30 \mathrm{MHz}$	$\begin{aligned} & \text { C.W. } \\ & \text { S.S. } \\ & \text { D.S.B. } \\ & \text { I.S.B. } \\ & \text { F.S.K. } \end{aligned}$	$\begin{aligned} & 50 \text { or } 75 \Omega(1 / P) \\ & 600 \Omega(0 / P) \end{aligned}$	$\begin{aligned} & 1 \mu \mathrm{~V} \\ & 17 \mathrm{~dB} \end{aligned}$		U.K.	
N 2020 (Price on request)	Double superhet	$\begin{aligned} & 240-525 \mathrm{kHz} \\ & 1.5-28 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { C.W. } \\ & \text { S.S.B. } \\ & \text { D.S.B. } \\ & \text { F.S.T. } \end{aligned}$	$\begin{aligned} & 75 \Omega(1 / P) \\ & 200 \text { or } 600 \Omega(0 / P) \end{aligned}$	$\begin{aligned} & 1 \mu V \\ & 15 \mathrm{~dB} \end{aligned}$		U.K.	
RC 410/R (Price on request)	Double superhet	2-30MHz	$\begin{aligned} & \text { A.M. } \\ & \text { C.W. } \\ & \text { S.S.B. } \end{aligned}$	$\begin{aligned} & 50 \Omega(1 / P) \\ & 3 \text { or } 600 \Omega(0 / P) \end{aligned}$	$\begin{aligned} & 0.8 \mu V \\ & 10 d B \end{aligned}$		U.K.	
RC 411/R (Price on request)	Double superhat	$15 \mathrm{kHz}-30 \mathrm{MHz}$	$<$	$\text { RC } 410 / \mathrm{R}$	$\begin{aligned} & 30 \mu V(\text { L.F. }) \\ & 10 \mu V \text { (M.F.) } \\ & 0.6 \mu V(\text { H.F. }) \end{aligned}$		U.K.	
PARK AIR ELECTRONICS L Double S Line (Aircraft monitor) £52 16s to $£ 9516$ s.	ro. Superhet	$118-136 \mathrm{MHz}$	A.M.	$\left.\begin{array}{l} 50 \Omega(1 / P) \\ 8 \Omega \\ 60 \Omega \end{array}\right\}(O / P)$	$\begin{aligned} & 1 \mu V \\ & >15 \mathrm{~dB} \text { at } 2 \mu \mathrm{~V} \end{aligned}$	16-28 Semiconductors	U.K.	Comprises 6 models, 3 mains operated. (15 Series) and 3 battery.operated (10 Series). Models W/SS have 6 additional positions for crystal-controlled osc. Models A/SS use 50 kHz crystal filters.

Model JR-500SE CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER

* This receiver cavers all the amateur bands between 3.5 and 29.7 MHz . * Dial with antibacklash double gear construction. Precise tuning all signals, including SSB. * Superior stability with crystal controlled first local os. cillator and VFO type second oscillator.
* Frequency drift is practically nil due to the use of a solid state VFO circuitry. * Superior selectivity by use of mechanical filter in IF circuitry. * Receiver with built-in product detector assures good reception of SSB and CW. * BFO circuit utilizes crystal controlled oscil. lator for superior performance.

SPECIFICATIONS

* Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}(7$ Bands)
* Selectivity: $\quad \pm 1.5 \mathrm{KHz}$ at $-6 \mathrm{~dB}, \pm 6 \mathrm{KHz}$ at -60 dB
* Sensitivity: $\quad 1.5 \mathrm{mV}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz)
* Dimensions: $\quad 13^{\prime \prime}(\mathrm{W}) \times 7^{\prime \prime}(\mathrm{H}) \times 10^{\prime \prime}(\mathrm{D})$

8 TUBES COMMUNICATION RECEIVER

* A mechanical filter enabling superb selectivity witn ordinary IF transformers
* Frequency Range: 550 KHz to 30 MHz (4 Bands) * Sensitivity: $2 \mu \mathrm{~V}$ for 10 dB S / N Ratio (at 10 MHz) * Selectivity: $\pm 5 \mathrm{KHz}$ at $-50 \mathrm{~dB}(\pm 1.3 \mathrm{KHz}$ at -6 dB). When using the Mechanical Filter * Dimensions: Width 15 ," Height 7." Depth 10 ".

160 Ave.. Brugmann, Bruxelles 6, Belgium

the choice in over 50 different countries!

Teonex electronic valves and semi-conductors are supplied all the world over where quality and reliability count.
Teonex offer a comprehensive range of receiving, professional and special quality valves. Whether you require a device to mil specifications for government work or a commercial device for replacement in a television set, Teonex products are equally suitable.
For technical specifications and price lists. please write to Teonex Limited
2a Westbourne Grove Mews
London W. 11 - England
Cables: Tosuply London W.11.

TEOIEK

electronic valves \& semi-conductors
EXPORT ENQUIRIES ONLY \quad TEONEX

SANWA IGIITH

USED THROUGHOUT THE WORLD. SANWAS RELIABILITY. VERSATILITY. UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY SANWA.
6 Months' Guarantee. Excellent Repair Service

Mode P.IB	c3 7	6	Model K -30THD	Cl_{12}	0
Modelj 50	C5 10	0	Mocelf-80tho	¢13	is
Mode U-500m	6710	0	Model 380.CX		2
Model 360. TTA	717	6			
Model A 3 303 trid	¢10 10	0	Madel 430 Es	¢19	0
Modet AT-1	£11 1	6	Madel EM 700	151	0

MODEL U.50DN PLEASE WRITE FOR illustrated leaflets of these sanwa meters

SOLE IMPORTERS IN U.K;

 47-49 HIGH STREET. KINGSTON-UPON-THAMES, SURREY. Tel:01-546 4565

We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
We can also offer early delivery for many sizes of screws, etc. with Metric Threads

Please send for List W2/69 (WW)
WALKER-SPENCER COMPONENTS LTD.
5, High Street, Kings Heath, Birmingham, 14. Telephone: 021-444 3155 (Sales) and 5278

MONOLITHIC
INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circu't measuring only one twentieth of an inch square by one hundredth of an inch thick!

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

SPECIFICATIONS

10 Watts peak. 5 Watts R.M.S. continuous Frequency response: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Total harmonic distortion: Less than 1% at full output. Load impedance: Power gain: Supply voltage: Size:
Size:
Sensitivity: Input impedance: Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class AB output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely fiee from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR
IC-10
with IC-10 manual
Post free.
$59^{\prime}{ }_{6}$

Project 60

laboratory-standard high fidelity modules

Sinclair Project 60 comprises a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance. Now with the addition of three new modules to the range, the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.
The modules are: 1. The $\mathrm{Z}-30$ and $\mathrm{Z}-50$ high gain power amplifiers, each of which is an immensely flexible unit in its own right. 2. The Stereo 60 pre-amplifier and control unit. 3. The Active Filter unit with both high and low audio frequency cut-offs. 4. The PZ-5 and PZ-6 power supplies. A complete system could comprise, for example, two Z-30's, one Stereo-60, and a PZ-5. The P-Z6 is stabilised and should be used where the highest possible continuous sine wave rating is required. An A.F.U. may be added as required. In a normal domestic application, there will be no significant difference between using a PZ-5 or PZ-6 unless loudspeakers of very low efficiency are being used, in which case the PZ-6 will be required. For assemblies using two Z-50's there is the new PZ-8 stabilised supply unit to ensure maximum performance from these more powerful amplifiers.

All you need to assemble your Project 60 system is a screwdriver and soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully designed to fit into virtually all modern plinth or cabinets and only holes need be drilled into the wood of the plinth to mount the control unit and the A.F.U. Any slight slip here will be covered by the aluminium front panels of these two units.
The Project 60 manual gives all the building and operating instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as the latest additions to the range show. A stereo F.M. tuner is next to come. These and all other modules we introduce will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe, Project 60 prices are remarkably low.

Z. 30

20 Watt R.M.S. POWER AMPLIFIER (40 WATTS PEAK)

Z. 50
 40 WATT R.M.S. POWER AMPLIFIER (80 WATTS PEAK)

The' 2.30 , together with the higher powered $Z .50$ are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the Z.30 or $\mathbf{Z . 5 0}$ power amplifiers in your Project 60 system will depend on personal praference. But they are both the same physical size and may be used with other units in the Project 60 range equally well. The $\mathbf{Z . 3 0}$ is unique in that lt may be used with any power source between 8 and 35 volts without need for adjustment and may thus be driven from a car battery for example. For operating from mains, for the $Z .30$ use PZ. 5 power supply unit for most domestic requirements, or P.Z.6 if you have very low efficlency loudspeakers. For Z.50, use the PZ.5, PZ. 6 or PZ. 8 described below

specifications

Pawer Outpute 2.3015 watts R.M.S. Into 8 ohms, using 35 v.. 20 watts R.M.S Into 3 ohms using 30 volts.
2.5040 watts R.M.S. Into 3 ohms: 30 watts R.M.S. Into 8 ohms, both continuous, operating on 50 v .
Frequency response -30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Olstortion 0.02\% Into 8 ohms
Signal to nolse ratio better than 70dB unweighted
input sensitivity 250 mV into 100 K ohms
For speakers from 3 to 15 ohms Impedance
Size $3 \mathrm{tin} . x 2 \mathrm{tin} . x$ tin

STEREO 60 Pre-amp Control Unit

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefuliy designed and tested.

ACTIVE FILTER UNIT

The purpose of the filter unit is to reject frequencies above (scratch) or below (rumble) a specific cut off frequency when they contain unwanted interference. The Sinclair A.F.U. is unique in that the cut off frequency is continuously variable for both the scratch and rumble units and, as the attenuation in the rejection band is rapid (12dB per octave), the removal of Interference can be achieved with less loss of the wanted signal than has previously been possible.
Each channel has an overall gain of unity and the unit may be connected between the pre-amplifier and power amplifier sections of any system. Both amplitude and phase distortion have been made quite negligible by careful design and generous negative feedback employed.

SPECIFICATIONS

Employs iwo Sallen E Key type active fllter stages, one rumble (high pass) and one sciatch (low pass)
The two stages use complementary transistors to minimise distortion.
Supply voltage 15 to 35 V Current 3 mA max
Gain at 1 kHz , filters fiat $0.98(-0.2 \mathrm{~dB})$
H.F. cut off (-3 dB) variable from 28 kHz to 8 kHz at 12 dB /octave L.F. cut off (-3 dB) varlable from 25 Hz to 100 Hz at 12 dB /octave Distortion at 1 kHz (35 V supply) 0.02% at rated output

Bull, restede non suusarateed $£ 5$.19.6

Treble and bass cut and boost curves
2.50

Buil. tested guarenteed, with menual

109/6

SPECIFICATIONS FOR STEREO 60

- Inpur sensitivities - Radio-up to 3 mV Magnetlc P.U.3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB} ; 20$ to $25,000 \mathrm{~Hz}$ Ceramic P.U.-up to 3 mV . Aux.-up to 3 mV
Output- 250 mV .
Signal-to-noise ratio-better than 70 dB
- Channel matching-within 1 dB .
-Tone Controls-TREBLE +15 to -15 dB . at 10 kHz BASS + 15 to -150 B aq 100 Hz .
Front panel-brushed aluminlum with black knobs and controls.
Size $8 \frac{1}{6} \times 1 \frac{1}{2} \times 4 \mathrm{ins}$.

SINCLAIR POWER SUPPLY UNITS

PZ-5 30 volts unstabilised-sufficient to drive two Z.30's and a Stereo 60 for the majority of domestic applications. £4.19.6 PZ-6 35 volts stabilised-ideal for driving two 2.30 's and a Stereo 60 when very low efficiency speakers are employed E7.19.6 PZ-8 45 volts power supply unit for use with $Z .50$ amplifiers (less malns transformer)
£6.19.6

GUARANTEE

The illusttation here snows quite clearly how easily Project 60 can be contained in one of today's slim, modern pllinths. Very liftle spece is required to house these Sinclair unlts, and within the space of the motor plinth. you can install a stereo amplifles of the very highes assembly as illustrated hare, adding the Actlve Fliter Unlt would be very easy.

If ar any ime within 3 months of purchasing Project 60 modules from us. you are dissatisfied with them, we will refund your money at once. Eoch module is guaranteed to work perfectly and should any defect arlse in normal use we will service it at once and without any cost to vou whatsoever provided that it is returned to us within 2 years of the purchase date. There surlace mall. Alr-mall charged at cost.
geiger counters latest government release, OF THESE EXCEEDINGLY POPULAR AND WELL KNOWN CONTAMINATION METERS. Which were intended for use, should the need arise, by the Civil Defence etc.

Thase ane new at vistually es new. being shaff stored ondy, and ars complete with \#il parts indvoing. Cerming Hovarisct. Cobie ond Probe. lissiructions for use The Moder incorporestes a Plugin Viterror Power Unh inste od of the norm』 Botton Hodest, theroby usumg fout stumderd Malion R.M. 12 A Long Lito Battoinss (not suppliedi. The unt is compiosiy portabie. boing made in Cast Aluminium.

 CARTON COMPLETE ANO TESTEO 9O/- POST 10/ TWO CARAIAGE PAID J. H. TOWNENO. 21 ThE ROUNOWAY, MORLEY, NR. LEEOS. YORKS

HOOD 10W-TEXAS 15W-BAILEY 30W
 Guaranteed new Motorola, RCA, SGS, Texas Tr's $\begin{array}{llllll}\text { BC107 } & 3 / 6 & \text { MJ48I } & 26 / 6 & 2 N 697 & 3 / 11 \\ \text { BC109 } & 2 / 8 & \text { MJ49I } & 2 \% & 2 N 1613 & 5 / 3\end{array}$ $\begin{array}{lcllll}\text { BC109 } & 2 / 8 & \text { MJ49 } & 29 /- & 2 N 1613 & 5 / 3 \\ \text { BC125 } & 10 / 6 & \text { MJE521 } & 15 /- & 2 N 3906 & 6 / 6\end{array}$ $\begin{array}{llllll}\text { BC126 } & 10 / 6 & \text { MPF103 } & 7 / 6 & 2 N 4058 & 5 / \\ \text { BCI82L } & 2 / 1 \% & \text { TIP3IA } & 19 \% & 2 N 4302 & \% /\end{array}$ $\begin{array}{llllll}\text { BC212L } & \text { 2/B } & \text { TIP31A } & 19 /- & 2 N 4302 & 9 /- \\ \text { M1P32A } & 22 /- & 40361 & 11 / 3\end{array}$ Matched pairs 1/- extra per pair. Postage $1 /-$ on orders below Cl .0 .0 .
 Matched 10 Tr's (Bailey 30 W) with Pcb Matched $10 \mathrm{Tr}^{\prime}$ s (Texas 15 W) : 152082 A Matched 4 Ir's (Hood loW) with MJ480s Matched 4 Tr's (Hood loW) with MJ48Is
 ©6.5.0
 \&6.5.0 \& 3.9 .6
 63.9.6 E2.9.6

 Send S.A.E. for List of ComponentsGUARANTEED DESPATCH BY FIRST CLASS RETURN A. 1 FACTORS. 72 BLAKE ROAD.STAPLEFORO. NOTTS.

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfieids \& Mayco Disposals,
21 Lodge Lane, London, N. 12
RING 4452713
4450749
9587624

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?

Courses include:

- RADIO/TV ENG. \& SERVICING
- AUDIO FREQUENCY
- CLOSED CIRCUIT TV

ELECTRONICS-
ELECTRONIC MAINTENANCE

- INSTRÚMENTATION AND CONTROL SYSTEMS
- NUMERICAL CONTROL

ELECTRONICS

- COMPUTERS
- PRACTICAL RADIO (with kits)

Guaranteed Coaching for:

- C. \& G. Telecom. Techns' Certs.
- C. \& G. Electronic Servicing
R.T.E.B. Radio/TV Servicing Cert.
- Radio Amateur's Examination
- P.M.G. Certs. in Radiotelegraphy

General Certificate of Education

ENTHUSIASTS

or tape recording subscribe to the only Magazine devoted exctusively to the ubject. 25/- (U.S.A.) \$3.78 yrly. incl. postage.

- FREE SPECIMEN COPY ON REQUEST 7 ALVERSTONE AVENUE, EAST BARNET, HERTS

COMPONENT PARTS EX STOCK FOR FOLLOWING HI FI DESIGNS BAILEY, LINSLEY-HOOD, TEXAS INSTRUMENTS
For list of parts and other information send S.A.E. to: TELERADIO ELECTRONICS
325 FORE STREET, N. 9
8073718

LAWSON BRAND NEW TELEVISION TUBES

12^{*} Types $\mathbf{6 4 . 1 0 . 0}$
14^{*} Types $£ 4.19 .0$
17^{*} Types 85.19 .0
19* Typés E 6.19 .0
$21^{\prime \prime}$ Types $\mathbf{E 7 . 1 5 . 0}$
$23^{\prime \prime}$ Types 89.10 .0
19° Panorama 88.10 .0
23" Panorama $\{11.10 .0$
19^{*} Twín Panel 19.17 .6
23" Twin Panel $\mathbf{\{ 1 2 . 1 0 . 0}$
Carriage and insurance $12^{\prime \prime}-19^{\prime \prime}-1216$ $21^{\prime \prime}-23^{\circ}-1510$

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the nerp Laroson "Century 99" range of C.R.T.s. Century 99% are absolutely brand neto subes hroughout manufactured by Britain's largess C.R.T. manufacturers. They are guaranseed to give absolutely superb performance vith needle sharp definition. Screens of the very latest sype giving maximum Contrast and Light output; together with high reliability and very long life.
"Century 99 " are a complete range of tubes in all sizes for all Brisish sers manufactured 1947-1969. Complete fitting instructions are supplied , with very tube.
2 Years full replacement guakantee
WW-114 FOR FURTHER DETAILS

LAWSON TUBES
18 GHURCHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100

CAPACITOR DISCHARGE IGNITION SYSTEM

Using the article as published in the January 1970 issue of Wireless World, a universal printed-circuit board has been designad sultable for both positive and negative sarthignition systems. This also enables simple conversion to opposite polarity if the vehicte is subsequently changed.
The printed-circuit board incorporates Cinch printed-circuit mounted screw terminal blocks for the input and output connections, together with a printed-circult moumted fuse carrier with fuse.
A complete complement of components and semiconductors are supplied together with a ready drilled and fluxed printedcircuit board. drilled heatsink. hardware and suitable transtormer.
Although wiring details are supplied for both positlve and negative earth versions. customers must state which version they require so that the correct semiconductors can be supplied.

Price E9-5-0 plus 10/- carriage.
Trade Enquiries Invited. Mail Order Onfy.

DABAR ELECTRONIC PRODUCTS 98a, Lichfield Street Walsall, Staffs.

THERE ARE GEMS IN IRELAND

This is one

THIS is another

IF YOU WANT A REAL GEM CONTACT

WW-115 FOR FURTHER DETAILS

BENTLEY ACOUSTIC CORPORATION LTD.

8 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1

 THE VALVE SPECIALISTS Please forward all mail orders to Littlehampton

17/8 U49 \qquad
\qquad $8 /-180 \mathrm{BCl}$

 MATCHED TRANSESTOR SETS:-
LPIS (ACLIS, ACI54, ACI57, AA120). $10 / 6$. Q875/2015
 สีన్నిన్రి $31-$
81
$81-$
86
$81-$
17
 $1 /-\mathrm{PCFs} 30$ aconda nore rejew and sublect to the manufacturers' gusrantee. We do not handle manutacturera"
 packing free. All orders cleared sarne day by firot-cluss mati. Any parcel insured sgainat dannage in GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX, Littlehompron 6743

HART PARTS

Current Range

BAILEY 30 watt
BAILEY 20 watt
BAILEY Pre Amp

LINSLEY HOOD 10 watt Class A
New additions this month
LINSLEY HOOD Simple Pre Amp
LINSLEY HOOD Class A-B
J. E. SUGDEN Class A Power Amplifier described in 'Hi-Fi News' April/May, 1970

Please send S.A.E. for Price Lists of all the above

HART ELECTRONICS 321 GREAT WESTERN STREET, MANCHESTER 14

THE FIRM FOR QUALITY

Personal callers welcome, but please note we are closed all day Saturdays

High grade of stability of electric parameters Resistance and durability Lọng operational life

Polish

electronic tubes for radio receiver sets electronic tubes for TV receiver sets and electronic components are offered by

Foreign Trade Enterprise
Warszawa, Al. Jerozolimskie 44, Poland P.O. Box Warszawa 1 No. 370.

Telex No. 81437

To persons interested we forward detailed information, catalogues and tenders.

SALES P.0. box 5 WARE,HERTS TEL. WARE 3442

SEMICONDUCTORS TOP TOP HAT SILICON FOR W.W. CAP-DIS RECTIFIERS. All good. No 2N3525.. 15/
2N $2525 \ldots$
$2 N 3055 \ldots$
$2 N 3702 \ldots$
2N3055..
2N3702.
2N3704. Voltage range $24-400$ PIV.
$1 N 4001$.
IN4005:
New and fully guaranteed.
PLASTIC PNPSILICON turer's seconds Manufacturer seconds from
$2 N 3702-3$ family. Ideal cheap trans, for manufacturing ete.
\qquad PLASTIC NPN SILI. CON TRANSISTORS. Manufacturers' seconds from 100 pIV 1-24 25-99 100 up 400 PIV $14 /=12 /$ er $10 /-$ devices guaranteed. 2N3707-3711 family. Ideal
cheap trans. for manal

1/6

TESTED TRANSISTORS
1/6
One price only PNP. NPN slilicon each. Planar or Germ. Fully Tested and ACl25 ACY36 NKTII

25	ACY36			
ACl126	BC108	$\begin{aligned} & \text { NKT73 } \\ & \text { OC44 } \end{aligned}$	${ }_{2}^{2 G 382}$	${ }_{2} \mathbf{2 N} 22200$
AC128	BFY50	OCH^{4}	2 N 696	2N3711
ACI30	BFY51	0 O 71	2N697	2N2906
ACYI9	BFX84	0 Cl 2	2N706	2N2907
ACY20	BFX86	$0 \mathrm{C75}$	2N708	2N2696
ACY21	BFX88	OC81	2 N 929	2N3391
ACY22	NKT141	- ${ }^{\text {c }} 2$	2N930	2 N 3702
ACY27	NKT142	T1544	2Nil31	2N3703
ACY28	NKT212	2 G 301	2 N 1132	25102
ACY29	NKT213	2G302	2 N 1613	25103
ACY30	NKT214	2 G 303	2N1711	25104
ACY31	NKT215	2 G 308	2N2904	25732
ACY34	NKT271	2G371	2N2905	25733
ACY35	NKT677	2G374	2N2924	

TRANSISTOR EQVT. BOOK
2.500 cross references of eransistors-aritish, European, American and Japanese. A must for every eransiator user.
Exclusively distributed by DIOTRAN SALES. IS/- EACH.
Uast Vast mixed lot of subminiature slass diodes. Com-
prising of Sllicon, Geim, Point Contact and Gold Bonded types plus nome Zeners. 500,000 available at 1,000 pieces $\mathbf{6 3 . 0 . 0} 5,500$ pieces $\$ 13.10 .0 .10,000$ pieces 223

BRAND NEW FULLY TESTED EPOXY CASE BEN 3000 and replacemenc for 2 N2646. Full data available. LOWEST PRICE AVAILABLE ANYWHERE. 100 off $4 /-$ each $=$. $20 ; 500$ off $3 / 6$ each $=687.10 ; 1.000$
$=~$
$=150$. Sample devices $71-$ each on request.

HIGH OUALITY SILICON PLANAR DIODES SIB-MINIATURE DO- 7 Glass TYpe, sultable replacements or 84 per 1000 , ieces GUARANTEED 80% GOOD

FULLY TESTED DEVICES AND QUALITY GUARANTEED-SURPLUS TOREQUIREMENTS OA202 Silicon Diode. Fully Coded.
150 piV 250 mA Qty. Price C30 per 1,000 pieces.
50 PIV 250 mA . Qiy, Price $£ 25$ per i
BYI00 SIL RECT'S 800 PIV 550mA.
$1-492 / 6$ each; $50-99$ 2/3 each; $100-999$ 2/- each; 1.000 up -19 $2 / 6$ each; $50-992 / 3$ each; 100-999

Post and Packing costs are continually rising, Please add
I/- towards same. CASH WITH ORDER, PLEASE.

OVERSEAS QUOTATIONS BY RETURN. SHIP-
MENTS TO ANYWHERE IN THE WORLD.

 blue, with 18 -gauge front panel supplied with easy-to-strip protective covering for easy marking out For ease of ordering Contil cases are described by their dimensions, i.e. 755 is $7 \times 5 \times 5$. Individually packed, including feet and screws.

Contil cases are also available with aluminium panels and Contilcote, which is applied afterdrilling and cutting.

CASE PRICES (All subplied with protective coated steel panels)

Nos. denote size in inches

755

867/975
1277 white or black panel 1277 unpainted 16127
191010
1910100

1	5	10	25	50	100	$P \& P$
$48 /-$	$46 /-$	$45 /-$	$44 /-$	$43 /-$	$41 /-$	$6 /-$
$50 /-$	$49 /-$	$48 /-$	$46 /-$	$45 /-$	$43 /-$	$6 /-$
$55 /-$	$52 /-$	$51 /-$	$50 /-$	$49 /-$	$48 /-$	$8 /-$
$45 /-$	$44 /-$	$43 /-$	$40 /-$	$39 /-$	$37 /-$	$8 /-$
$106 /-$	$104 /-$	$102 /-$	$101 /-$	$99 /-$	$97 /-$	$9 / 6$
$143 /-$	$140 /-$	$137 /-$	$135 /-$	$134 /-$	$133 /-$	$10 / 6$
$199 /-$	$197 /-$	$196 /-$	$194 /-$	$192 /-$	$190 /-$	$18 /-$

Your third hand

The ONTOS UNIVERSAL VICE is a new type of multi-purpose, mulxi-position lighe engineering vice and stand, fully adjustable for any angle and location in any desired plane. Applications are virtually limitess within its size capacity; i.e. holding P.C. boards for assembly or testing, building up modules, as a micrometer or gauge stand, as a light general purpose vice, in the chemical laboratory, or in fact for all those occasions when you could use a third hand! The ONTOS TWIN TWO-IN-ONE UNIVERSAL VICE is a unique two-in-one version of the Ontos vice, with two sers of jaws, each capable of rotation through 360 deg, of every plane independently of each other. Positive locking enables any such setting to be maintained for reperition work. Ideal for copying P.C. boards, assembly, soldering, bonding, welding, laboratory testing, etc.

ONTOS: 68/- plus P\&P 4/6
ONTOS TWIN: £5 180 plus P\&P 6/

ADET CUTS; NOTCHES AND TRIMS

The Adel cuts holes to virtually any shape and size. Starting with a $7 / 16^{\circ}$ hole It then 'nibbles' to the size required, cutting cleanly like a punch and die. The cutter is so designed that it causes little strain or distortion to the edges or to the original form. With the Adel any shape or size hole over $7 / 16^{\circ}$ can be cut whether it be round, square or irregular. It is ideal for notching clearances on flanges of cabinets or chassis, or for trimming undersized holes to fit parts

ACCESSORIES

Flexible insulated test prods, colour red or fine steel elips at the tip. opened by button on top. High speed resetting counter including bezel and socket with speed of over 40 operations per second $165 /$. Plug in oc tal relay, 24 volks, with

WEST HYDEDEVELOPMENTS LTD 30 HIGH STREET NORTHWOOD MIDDX. Telephone: Northwood 2494 1/26732

TECHNICAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 222, Intertext House, Stewarts Road, London, S.W. 8
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)

NAME
ADDRESS

R.S.T. Valve mail order co. BLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W. 16

20382
20401

20382
20401
운웁

Express postage 9d. per valve.
Ordinary postage 6d. per valve.
Over 65 postage free.
Tel. 01-769 0199/1649

Monday to Saturday
9 a.m.-5.30 p.m.
Closed Sat I-30-2-30 p.m.
Complete range of TV Tubes available from 44.5.0.

LIMITED

LOOK! TRANSISTORS ONLY 6d EACH

TYPE A
PNP SILICON ALLOY to-5 CAN
Spec:- ICER AT VCE $=20 \mathrm{v}$ 1 mA MAX. MFE. 15-100
These are of the 2 S 300 type which
These are of tirect e

TYPE B
PNP SILICON PLASTIC ENCAPSULATION Spec:-

ICER AT VCE $=10 \mathrm{v}$
1 mA MAX. 1 mA MAX.
HFE. 10-200
These are of the 2 N3702/3 and

TYPE E
PNP GERMANIUM
fully marked AND TESTED. STATE R.F. OR A.F WHEN ORDERING.

NEW UNMARKED UNTESTED PAKS
INTEGRATED CIRCUITS. DATA
INTEGRATED CIRCUITS
$\&$ CIRCUITS OF TVPES.
$\begin{array}{lll}878 & 12 \quad \text { \& CIRCUITS OF TYPES. } \\ \text { SUPPLIED WITH ORDERS }\end{array} 10$

880	8	DUAL TRANS. MATCHED O/P
8	PAIRSNPL-SIL. INTO- 5 CAN.	

$\begin{array}{llll}882 \quad 10 & \text { OC45. OCB1D } \& \text { OCB1 TRANS } \\ \text { MULLARD GLASS TYPE } & 10 /\end{array}$
200 TRANSISTORS. MAKERS
883200
REJECTS. NPN.PNP. SIL \&
\qquad

888	50	SILTRANS, NPN, PNP. EO TO OC200/. 2N706A. 8SY95A. ETC	10/-
860	10	7 WATT ZENER DIODES. MIXED VOLTAGES	10/-
H5	16	1 AMP PLASTIC DIODES 50-1000 VOLTS	10/-
H6	40	250 mW . ZENER DIODES DO-7 MIN. GLASS TYPE	10/-

8772	AD161-AD162 NPN/PNP TRA COMP. OUTPUT PAIR	10/-
в81 10	REED SWITCHES MIXED TYPES LARGE \& SMALL	10/-
2	5 SP5 LIGHT SENSITIVE CELLS LIGHT RES. 400Ω DARK $1 \mathrm{M} \Omega$	10/-
8918	NKT163/164 PNP GERM. TO -5 EQUIVALENT TO OC44, OC45	10/-
8924	NPN SIL TRANS, A06 $=$ BSX20, 2 N 2369.500 MHz .360 mW	10/-
5	GETI13 TRANS. EQUIV. TO ACY17-21 PNP GERM.	10/-
8965	2N3136 PNP SIL. TRANS. TO-18 HPE $100-300 \mathrm{IC} .600 \mathrm{~mA} .200 \mathrm{MHz}$	10/-
39810	$\times 8112$ \& X8102 EQUIV. TO AC126 AC156, OC81/2. OC71/2. NKT271. ETC.	10/-
в99 200	CAPACITORS. ELECTROLYTICS. PAPER SILVER MICA, ETC POSTAGE ON THIS PAK 2/6.	10/-
250	MIXED AESISTORS POST \& PACKING 2	10/-
40	WIREWOUND RESISTORS MIXEO TYPES \& VALUES. POSTAGE $1 / 6$	10/-

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components. approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 10/-
2/-P \& P on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate re counter for any car.

20 -each

FREE CATALOGUE AND LISTS for: -

ZENER DIODES

 TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHARTMINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 /$ - post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.
P.O. RELAYS

VARIOUS CONTACTS AND COIL RESISTANCES. NO INDIVIDUAL SELECTION.

POST \& PACKING 5/-

8 for
20/-

FREE: A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS
\square DEPT. B, 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX
 TELEPHONE: SOUTHEND (0702) 46344

SCOOP-PA SYSTEM

$* 50,000$ OHMS PER VOLT
MULTIMETER
instrumentended with mility
scale and overlond prorer scale and overload prozec-
tion. $0.0 .3 / 3 / 12 / 60 / 120300 /$
$600 / 1200 \mathrm{~V} / 12 / 1502 / 3001$
 $60 / 300 \mathrm{~mA}$ o/i2A resist-
ance $0 / 10 \mathrm{k} \Omega / 1 / 10 / 100 \mathrm{M} \Omega$.
Mer Meter movement $20 \mu \mathrm{~A}$.
Polarity
reversing Complete with batter AF 105 C8.10.0 p.0. 2
Leather case 28

* transistorised rf MILLIVOLTMETER
Mains or battery operated,
$0 / 3 \mathrm{mV}$ up to 300 AC . Input
 higher and lower frequencies.
Fully seabilised $240 \times 114 \mathrm{~mm}$. Complete with handbook. iI scales 0.003
FSD to 300 V FSD. Also 0 BM FSD to 300 V FSD. Also dBM
and dBV scales.
ymst $\begin{array}{ll}\text { Price } 632 \text { p.p. } 8 / 6\end{array}$

Complete system comprising Control Unit,
Tannoy loud hailers. microphone and headphones, etc., $12 V$ D.C. operation.
Low bateery drain. 8 watts power outgut. Low battery drain. 8 watts power output.
The ideal system for mobile use, outdoor
meetings, sports days, factories, garden meetings, sports days, factories, zarden reses, ate. Speakers can be soaced effectivel
over hundreds of yards. Also has talk back cartons. Original cost over E60,
OUANTITIES AVAILABLE FOR EXPORT

\% GRID DIP METER All transistor grid dip meter, absorption wave- meter and osc. detector. Frequency range $440 \mathrm{kc} / \mathrm{s}$ to $280 \mathrm{Mc} / \mathrm{s}$ in 6 coils. Uses 3 transistors plus diode with 500μ A meter. Internal battery. TEI5 \&II.10.0 p.p. $3 / 6$

* 10 in 1 TEST UNIT
A now design
Model $S E 400$
Price $\{9.10 .0$. ance $0-6 \mathrm{k} \Omega$ and $6 \mathrm{M} \Omega$.
Also dB
Capacis
\qquad * RF SIGNAL GENERATOR

Accurate wide range signal
generator covering $120 \mathrm{Kc} / \mathrm{s}$ -
$500 \mathrm{Mc} / \mathrm{s}$. cal Mc/s on 6 bands. Directly
calibrated. Variable RF. ustor, audio ourpuz. Xtter.
socker for calibration. 240 V . A.C. Brand new. With
inseructions. Size 140×215 $\times 170 \mathrm{~mm}$

NOMBREX
transistorised
Test Equipment

* DC STABILISED POWER SUPPLY
 Switched DC Seabil ised Outpurs UP TO
1 AMP. $3-6-9 \& 12$ VAMP. 3-6-9 \& 12 lamp for each volt-
age. Fully fused.
Mains operated. Mains operated.
Nerligible ripple.
Rerulation
SEIOIA

HI-FI equipment to suit EVERYPOOKI

Complete range always in stock with special low prices for complete systems
and individual units. Two Demonseration and individual units. Two Demonstration
Rooms, HP and Credic Sale facilities and plenty, of free advies. New 120 page Catalogue covers every aspect, $12 / 6$ single extra discount voucher Order as catalogue ' B '
E. ZE NEW EDITION, 10 PAGE

* DISCOTHEQUE ANO PUBLIC ADDRESS-A SPECIALITY

CREDIT SALES (CALLERS ONLY) FOR PURCHASES FROM 530

FREE ${ }^{18 \text { Page test EOUIPMENT }}$ catalogue (Rel. No. 33)
QUALITY PANEL METERS

38 SERIES

38 SERIES				
Face Size	$42 \times$	42 mm .	DC	eypes.
50	u A	.	:.	37/6
100	-	\cdots	\cdots	35/-
200	"	.	-	32/6
500	,	.	.	$27 / 6$
50-0-50	"	.	.	35/-
100-0-100	"	.	-	32/6
500-0-500	*	.	\ldots	25/-
1	mA	.	.	25/-
5	.	\ldots	. .	25/-
10	"	.	..	25/-
50	"	\cdots	*	25/-
100	-	.	-	25/-
500	,	25/-
1	Amp	.	-	25/-
5		\cdots	\cdots	25/-
10	Voles	..	\cdots	25/-
20	.,	.	-	25/-
50	*	\cdots	.	25/-
300	"	.	\cdots	25/-
500	*	\cdots	-.	25/-
'S' Metor	1 mA	.	.	29/6
VU Merer 65 SERI		.	. .	37/6
Face Size	$86 \times$	78 mm .	DC	types.
50	$\mu \mathrm{A}$.	..	62/6
100	-	.	.	52/6
200	-	.	.	$47 / 8$
500	-	.	. .	45/-
50-0. 50	"	.	.	52/6
100-0-100	.	\cdots	.	49/6
500-0-500		37/6
1	mA	\cdots	.	37/6
5	*	.	.	37/6
10	*	.	.	37/6
100	"	\cdots	.	37/6
500		.	.	37/6
10	Volts	.	\cdots	37/6
20	.	\cdots	.	37/6
50	-	.	.	37/6
100	-	.	.	37/6
300	-	.	.	37/6
500	n	.	..	37/6
'S' Meter 85 SER1	$\operatorname{lma}_{\mathrm{EES}}^{\mathrm{m}}$	\ldots	..	42/6
Pace Size 1	$120 \times$	110 mm .	DC	
50	114	.	-.	69/6
100	*	.	\cdots	59/6
500	-	.	.	52/6
100-0-100		.	\cdots	59/6
1	mA	\cdots	.	49,6
100	,	.	.	49/6

ELECTRONIC COMPONENTS

- Vast range of transistors, diodes,
valves, subes, IC's in stock. Free
llst No. 36, or see Caralogue A.
- Complete range of components i
stock, including special and hard
omponents.
If you are at all interested in Electronics then you are missing out
without a copy of 'Henry's' 350 without a copy of "Henry's' 350 -page
Catalogue 'A." Price $7 / 6$ p.p. $2 /-$ with 10/-value discount vouchers.

FREE

To all schools, collezes etc. and all UK's lans interested.
UK's largest stockists of Electronics
for uvery uss. Over 8500 lines in stock.

* DE-LUXE SINE-SQUARE WAVE RC AUDIO GENERATOR

Weinbridge RC Audio oscillator featuring four overlapping scales covering $18 c / \mathrm{sin}$ to
$200 \mathrm{Kc} / \mathrm{s}$. Output waveforms are sine square and complex. Mirrored scale with smooth geared tuning control. Output
5 volts RMS or 10 volts PP. Sinewave response \pm idB, Distortion under 1%
as $\mathrm{KKc/s}$. . Stability $\pm 1 \%$. O/P impedance under 3 K Accuracy ohms. Variable attenuator. Mains operated. With hand

GRAVINER FIRE

STC CRYSTAL FILTER
$\pm 7.5 \mathrm{~K} / \mathrm{CS}$ BAND WIDTH

PORTABLE
$0-10 \mathrm{mr}$ GEIGER COUNTERS

HIGH CAPACITY ELECTROLYTICS | $40,000 \mathrm{mfd} 10$ vole |
| :--- |
| $35,000 \mathrm{mid} 15$ |
| $25,000 \mathrm{mid}$ |
| 5 volt | $25,000 \mathrm{mid} 25$ volz

$46,000 \mathrm{mfd} 25$ volt Discounze for quantities MADE BY MALLORY, USA
E.A.C. DIGIVISOR mi. It

STC TIME DELAY MODULE

ELECTRONIC ORGANS

-MODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS KITS OR READ *VENEERED CABINETS FOR ALL MODELS + 49 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE *KITS AVAILABLE IN SECTIONS AS REQUIRED *HP and CREDIT SALE FACILITIES
When in
FREE
FREE! 16 PAGE ING ORGANS IN KIT FORM AND READY BUILT WRITE OR PHONE TO ORGAN DEPT. ASK FOR PETER ELVINS.

303 EDGWARE ROAD LONDON, W. 2
(01) 723 1008/9 Ext. 4

OPEN MON-SAT 9am-6pm THURS $9 \mathrm{am}-\mathrm{lpm}$

HOLIDAY Photos ON THN TTL!

 Sprague or Ferranti 74 N TTL integrated circuits. Wel, ship at manufacturer's prices and give top quality Agfa film to fit your camera. Our high speed delivery is free too!

Offer closes July 31st. and applies to orders over£10

IE COMPONENTS LTD.

 5 LOVERDCK RDAD. READING. Tel.580616/9 Telex 84529MINISTAY OF TECMNOLOGY APPRDVED DISTAIEUTOA WW-099 FOR FURTHER DETAILS

NEW 48 SHEET METAL BENCH MODEL BY PARKER

$48^{8} \times 18$ gauge capscity. $840 \quad 0 \quad 0$
$36^{\circ} \times 18$ gauge capacity. $24^{*} \times 16$ gaugo capacity
$627 \quad 100$ $C 26100$ Carriage Free

Also the well-known vice models of
$36^{\circ} \times 18$ gauge capacity................ ©14 00 $24^{\circ} \times 18$ gatuge capacity................... 880

Carriage Free
WW-100 FOR FURTHER DETAILS

ENCAPSULATION -
 low tool cost method for cylindrical

 coils and potting. Enquiries also for-REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.

One year's guarantae. Money back if not satisfied. Send for details:

A. B. PARKER

FOLDING MACHINE WORKS HECKMONDWIKE, YORKS Telephone 3997

Knapps Lane, Bristol 5. 0272657228

RADIO \& TV COMPONENTS (Acton) LTD 21 a High Street, Acton, London, W.3.
also 323 Edgware Road, London, W 2.
Goods not dispatched outside U.K. Terms C.W.O. All enquiries S.A.E.

Complete stereo system-£29 10s.

The naw Duo ganeral-purpose 2-way speaker system is beas-ilully finished in poisted reak veneer, with matching vynair grile. It is ideal for wall cr shelf mounting either upright or horizontally. Type 1 SPECIFICATION:
Iniperiance 3. E. o 10 ohms falease stata mpadance requaredt. It mest wrates

 speaker and 2;" igh trequency speaker, 3 ohms impedance.
6 guineas plue $1 \bar{y} /$ p. \& p.
Garrard Coangers from E7.19.6d. p. \& p. 7/6rd
 Cover anc Teas finish Plinth $£ 4.15 .0 \mathrm{~d} .7 / 60$. p. \& D.
(1) 10 \& 10 £9 10s

The Ductio s a good quality amplifier, attractively styed and tinished lt g ve superbreproduction previously associated with amplifiers cest ng far more.
SPECIFICATIDN
R M.S. power Ju put. 3 watts per channel into 10 ohms speakers
INPUT SENSIT VITY: Suitable for medium or high outpun crystal cartridges and iu ters. Cross lalk belter than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$.
CONTRCL.S: 2 -rosition selector switch (2 pos mono and 2 pos. s ereo) dual ganged volume control
TONE CONTRO_. Treble hift and cut. Separate on off swith. A veset balance contal

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-785।

01-262-512
G.P.O. L.T. SUPPLY UNIT Type 19. A.C. input, tapped 200-250v., 100-120v. D.C. Output,
12 or 24 volis, very conservatively rated at 3 amps. Can be connected to give 12 volts 6 amps. Bulte into atrone meta

ADVANCE C/V TRANSFORMERS
Type CV $15 / 95$. Input $95-130 v$., $190-260 v$ Ourput 4 V
or - 1%. 3 wats. Open frame type. 25/, P. \& P. 5

BRAND NEW GAROERS TRANSFORMERS

LOW VOLTAGE ISOLATION TRANSFORMERS $5 \mathrm{ec} .6 .3 \mathrm{~V} ., 5 \mathrm{Sec} .2-0-2 \mathrm{v} ., 4 \mathrm{~A} ., 5 \mathrm{kV}$. wkg. "C" core potred type 17/6, P. \& P. 3/6

```
PARMEKO NEPTUNE SERIES TRANSFORMERS ri. sapped \(200-220-240\)... Sec. \(250-0-250 V\). 50 M/A.- 6.3 , A. Size \(H\) : \(4 \times 3 \times 21\) ins.; with fixing bolts. Brand new
PARMEKO CHOKES-NEPTUNE SERIES
```



``` \(10 \mathrm{M} / \mathrm{A}, 50 \mathrm{AH}\). \(25 \mathrm{M} / \mathrm{A} ., 211\) types. B/6 each, P. \& P. \(3 / \mathrm{s} .0 .7 \mathrm{H}\)
\(450 \mathrm{M} / \mathrm{A}\). \(12 / 6\). P. \& P \(416.1 \mathrm{H} .300 \mathrm{M} / \mathrm{A}\). \(10 / 6\) P. \& P. \(4 / 6.5 \mathrm{H}\). \(150 \mathrm{M} / \mathrm{A} .17 / 6\)
34H. \(60 \mathrm{M} / \mathrm{A},-70 \mathrm{H} .35 \mathrm{M} / \mathrm{A} ., 2 \cdot\) Bkv., D.C. Wkg. \(25 /-\mathrm{P}\).
```

PARTRIDGE TOTALLY ENCLOSED CHOKES
 HADEONS. 12 HE . $50 \mathrm{M} / \mathrm{A}$. $10 / 6$. P. \& P. $5 /$. L.T. SMOOTH ING CHOKE: $16 \mathrm{M} / \mathrm{H}, 8$ amps. $35 / \mathrm{mi}$ P. \& P $4 / \mathrm{m}$. GRESHAM
SWING CHOKE: $20 \mathrm{H} .100 \mathrm{M} / \mathrm{A} .10 \mathrm{H} .45 \mathrm{M} / \mathrm{A} .49 / 6$. P. \& P.

SPEECIAL OFFER OF SLIDING RESISTOR
 300 1.5A. 19/6. P. \& P. 4/6. Normal geared drive. 782 a 1 A 2/6. Carr. 8/6. Single zube fixed $45+12 \cap$ 6.5/4A. 27/6. P. \& P. 6/6. Single tube adjustable $57 \cdot 2$ o $2 \cdot 8 \mathrm{~A} .27 / 6$. P. \& P. 5/6. Single zube fixed $71.5 \cap 28 \mathrm{BA}$. 25/\%. P. \& P. 5/6. Single rube adjustable 0.60 16A. 15/,. P. \& P. 3/6. vitreous fixed IK $\Omega 70$ watts. 5/P. \& P. $1 / 6$.

OIL-FILLED BLOCK CAPACITORS
T.C.C. 8 mld .2500 v , wkg. at $70^{\circ} \mathrm{C}$. $37 / 6$, P. \& P. $8 / 6.0 .5 \mathrm{~m} / \mathrm{d}$ $10,000 \mathrm{v}$. wke. at $70^{\circ} \mathrm{C}$. $37 / 6, \mathrm{P}$. \& $\mathrm{P} .8 / 6$. Dubiller 4 mid. 2500 v wks. at $70^{\circ} \mathrm{C}$. 25/०. P. \& P . $/ 6.2$ mid. 4000 v . wkr. at $70^{\circ} \mathrm{C}$ $\mathbf{2 5} / \cdot, P$. \& P. P. 7/6, 0.25 mld .7500 v . wkg. $17 / 6$, P. \& P. $4 / 6$ American Micamold 8 mid. 600 v . whe. 2t $100^{\circ} \mathrm{C}$. $10 / 6$, P. \& 4 . T.C.C. Visconol subular S-hole fixing. I mid. 2500 v. wke. a $60^{\circ} \mathrm{C}$. $12 / 6, P$ \& $P, 2 / 6,0.1 \mathrm{mid} .8000 \mathrm{v}$. wkg, at $60^{\circ} \mathrm{C}$. $10 / 6$ P. \& P 0.1 mid 50001 l wkg, at $60^{\circ} \mathrm{C}, 7 / 6^{\circ}$ P. \& P. 2/0.05 mid .10 .000 v , wkg. at $60^{\circ} \mathrm{C}$. $8 / \mathrm{s}$, P. \& P. $2 /$

AMPEX HYSTERESIS SYN. MOTORS
A.C. 117. A.C. $48-62$ CY. 2 -speed, reversible. $1200-1800$ r.p.m with capacitor. New. 67.10.0, carriage $12 / 6$
G.P.O. 20-WAY JACK STRIPS

Type 320 BN . New and boxed. 17/6, P. \& P. $2 / 6$

```
TAFE SPOOLS
```

standard 10 inch dia. N.A.B. spools for 1 inch sape. New and boxed. $15 /-$, P. \& P. 2/-

RANCO REFRIGEAATION THERMOSTATS Type A.10. $100-250 \mathrm{v}$. A.C. 1 h.p. $15 /-$, P. \& P. 21-. Teddington type QJ. $100-250 \mathrm{v}$. A.C. I h.p. $15 / \%$, P. \& P. $2 /=$
W.D. TELEPHONE CABLE
ingle D.3. One-third of a mile drums. Ideal for ourside tele phone systems. Fraction of maker's price. 57/6, carriage $10 /$

NEWMARK SYNCHRONOUS $220-240 \mathrm{v}$. 50 eveles, ${ }^{3}$ watss ${ }^{8}$ r.p.m.
Overall size $2 \times 2 \times 2$ ins. $10 / 6$. P. \& P. $1 / 6$..$~$ SEND 6d. STAMP FOR
LATEST PRICE LIST.

T.C.C. A.C. CAPACITORS

65 mfd 550 v . 50 cycles. KVA 6 士 10%. Amps 9.1. Discharge


```
MAGNETIC DEVICES LTD. RELAYS
```


A WIDE SELECTION OF SERVOMOTORS NOW AVAILABLE INCLUDES THE FOLLOWING TYPES

Mil sixe $11-400 \mathrm{~Hz}$ verslons for 26 and $115 v$ voperas
$10 / 20$. $13 / 26$ and $57.5 / 115 \mathrm{v}$. control phase windings. Mil size 08, $10,11,15$ and 18 motor generators for 400 Hz Oparation with 26 and $115 v$. energised tacho generators. Mil aize $08,10,15$ and 18 two phase servomotors also avail-
able with 400 Hz windings and a limited range in 50 Hz types.
 15 and 18 with supply voltages from 6 to 50 v . D.C MSI Tachogenerators size 08 and 10 for 400 Hz supply.
Mil size II Servorotor gearheads available in various Mil size 11 Servomotor gearheads available in various
ratios rom $10: 1$ to 10000110 . All items available ex stock and at extremely competitive Evershed and Vienoles' Servomotors and Servomotorennorators we whins 100 different types-an enquiry stating your broad design considerations will bring a reply by return indicating ex stock antid. most nearly meeting your requirements.
Write lor our Data Shaets A 131 onwards for details of MIL SYNCHROS avnileble ax stock in sizes $08,11,15$, 16,18 and 23 for 50,60 and 400 Hz operation.
ynchro Control Transformers
Synchro Control Dlfferential Transmitters
Synchro Toraue Transmitters and Recelvers Synchro Torque Transmitters and Receivers
Synchro Resalvers Equivalent MAGSLIP ELEMENTS more suitable for AGso in stack.
for our Date Sheets A 001 onwerdifor Synchro
400 Hz . MOTOR ALTERNATOR SETS Input 400/440v. 50 Hz 3 ph. output 115 v .400 Hz 100 VA . (coml. rating) for PRECISION POTENTIOMETERS Numerous instrument types, continuous rotacion potentiometers for concrol application and HELIPOTS in stock. List on application
Gertach COMPLEX RATIO BRIDGE Model CRB2B.

DRY REED INSERTS

Overall length 1.85° (Body length 1.1°) Diameter 0.14° e wirch up to 500 mA at up to $250 \vee$ D.C. Gold clad contaces. 10,000 . All carriage paid
BSX 76 FAST SWITCHING n.p.n. TRANSISTORS CVB615). For quantities up to 1,000 2/- each; up to 5,000
/9d.; over 5,000 $1 / 7 \mathrm{~d}$. each. Minimum order 10 off. In makers Packs. SWITCHING LOGIC DIODES BAY 38 (CV86I7) TAA DER YiLUM CAPACITORS We hold large stocks b TANTALUM CAPACITORS We hold large stocks by
S.T.C. T.C.C, Dubilier. Kemet, Plessey, G.E. etc., send for stock ilst with lowest prices for immediate delivery.
SEALED RELAYS bY G.E.C., S.T.C., Ericsson. Plessey etc. PLUEGS, SOCKETS \& CONNECTORS. Over 150,00 items in srock including Plessey Mk 4, 6, 7, 104, U.K.A.N Painton, Electromethods, Cannon, Belling Lee, Amphenol Lydd. ME, etc. RECORD MINOR INSULATION TESTER 250 V 50 M UNISELECTORS G.E.C. 4 BANK 25 WAY full non
 GRATING MOTORS for $1.5,6,12$ and 24 V operation in PRESSURE TRANSDUCERS G291S UP to 350 p.s.i. 100 pF sensitivity IpF/20 p.s.i. 45/- Rost paid ITERS I.T-1-4F士 GENUINE VARIACS 0-270v 2Kva excellent conditio E15 ($30 /$ - carriago) TRACK (t TAPE) ERASE, RECORD REPLAY HEADS Ser of 3 75/-(post paid). SCP4, SCP5. CLR96, CLR66 in stock.
BOURNETRIMPOTS. Wide
TRANSFORMERS 220/110v Hz SOVA Double wound Redcliffe. In steel case 55 -- (post Paid).
ETHER-ELECTROMETHODS TEMPERATURE PRO GRAMMER ANO CONTROLLER 0.140 OSC OR 0.1200 S (Tor Pt/Pt/Rh (13\%) COUPles) E45. $21.2-19 \mathrm{Mc}$ with chart
CLASS O WAVEMETERS No. 2 . Brand new E 15 (carriage $30 /$-).

$\delta_{\text {erroo and }}$ Electronic $\mathcal{S a l e s}^{\text {\& }}$ \&td

Electrical and Servo Control Engineers . Electrical Suppliers - Engineering Stockists - Aeronautical Suppliers Post orders to 43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington 31066/33976/33221 9 MILL ROAD, LYDD, KENT (Works). Phone: Lydd 252 67 LONDON ROAD, CROYDON, SURREY (Retail Branch and Instrument Repairs) Phone: 01-688-1512 (Croydon)

BC22IT WAVEMETER with charts. E25 (carriage 25/-).
 Prol 5A MC 45/-

10A RF CAMBRIDGE OYNAMOMETER VOLTMETERS in as each (plus carriage) GLOSTER DIGITAL VOLTMETERS to 999 V D.C. \& A.C. send for pamphlet. 592.10 .0 (carriage paid). CHART RECORDER IGSOO16 EZS (+ Carplare) TFB8SA SOHzMOMHz sine-square wave outputs ImV-31.6V in il ranges motered output 635 (carriage 30/-) fully serviced.
 (Carriage 30/-) Q METER TF329G 660 (carriage 30/-). MARCONI A.F. WATTMETER TF956 $\mu \mu$ wates to Wates into switched loads. 620 (carriage paid). CTq0 P.O.A. irmec SIGNAL GENERATOR TYPE 70I. 135 (carriage OSCILLOSCOPES SOLARTRON CD7IIS2 D.C.-9 MHz $£ 90$ (carriage
SOI_ARTRON COS68
E27.10.0 (Carr. 30/-.)
All instrumenis are full serviced at our Croydon workshops before sale and customers are invited to attend by appoinsmen inal test and inspection. All oscitloscopes are checked on our LOW PRICED OSCILLOSCOP

THE AUDIO EXECU ives sIXTY AMPLIFIER ourpue with H1-FI performance and full mixing facilitie
for 3 inputs. $E 58.15 .0$ guaran eed months. Trade supplied.

SANGAMO.WESTON PORTABLE sub-standard FRE GOOODMANS MIOAX 650 mid range horn units 150 hms special price 9.10 .0 (posiage $10 /$. LAMPS 2 contace S.B.C. 85V D.C. 30 dozen. C4. 2.6 . bOX OT STABILISED POWER COMP) MPUTER TAPE CARPYING CASES 131" square 2t deep.
R.F. VAR/ (carriage paid).
RLA 96 eurns silver clad wire on 2 d dia. low toss former f drive shaft, \mathbf{F}. \mathbf{H} ITCH (post paid). heavy silver contaces 2 way with cente off io pole make in each direction $15 /-$ (postage paid)

KING OF THE PAKS Unequalled Value and Quality

SUPER PAKS

EW BI-PAK UNTESTED SEMICONDUCTORS

Ratisfaction Guaranted in Every Pak, on money	
	120 Glasa sub-min. General Purpose Germaniun Dis
02	
	75 Germanium Goid Bonded Diodes sim. OAS,
	40 Germanium Translitors like OC81، AC128....
	$80200 \mathrm{~mA} 8 \mathrm{Bb} \cdot \mathrm{min}$
	ك..8120n
	A
\%9	20 Mixed Vott
021	30 PNP Sllicon Planar Tranalitor
	30 PNP-NPN SLI Traisistors OCz/0 \& 2
O15	
	10 3-Amp 814160
017	30 Germanlum PNP AP Translitarn TO-b like ACY 17
	Amp 8 llicon Reclinera 8
	30 Sillicon NPN Transiictors 1
	$121.3-\mathrm{mmp}$ sllicon Rectiten
	30 A.P. Germanium silloy T
	30 Xadt'a like Mat Bertes P
	20 Cermanjuta 1-amp Rect
	28 340Mc/9 NPN 8ulcon Transisturs 2N708,
	Experimenters' Assortment of Integrated Clrcult Gates, Plip-Flops, Regirtert, etc., 8 Assorted
	101 amp BCR's TO-5 can up to 800 PIV CR81/25-600 $\ldots 20$
	15 Piaatic Gillcon Planar traule. NPN 2N2924-28
	20 8iL Planar NPN trans. ${ }^{\text {cow }}$ noise Amp 2 N 37
U32	25 Zener dioden 400 mW D07 case mixed
	15 Platic case 1 amp silicon rectinera 1 N 4000 aorles.
	30881. PNP
	25 8LL Planar trans. PNP TO-18 2N2908
	25 8i1. Ptamar NPN trans. TO-5 BFY50/51
	30 Sul. alloy trans. $80-2$ PNP, OC200 28382
	20 Fat switching 8il traus. NPN, $400 \mathrm{Mc} / \mathrm{s}^{2} 2 \mathrm{~N}$
	30 RFF Gern. PNP tra
	30 gFP Germ. trans T0.1 OC 45 NET72............... $10 /$ -

Code Nos. mentloned above are given as a gulde to the typ
the Pak. The devices themselves are nornally unmarked.

BHPMK SEMICONDUGIDIS
 (DEPT. WW)

NEW LOW PRICE TESTED S.C.R.'S					
$\begin{aligned} & 1 \text { Anp } \\ & (\mathrm{TO} \mathrm{~S}) \end{aligned}$		3 Amp 7 Amp 16 Amp$\mathrm{TO}-66)(\mathrm{TO} \cdot 48)(\mathrm{TO} \cdot 48)$			
PIV	Each				
50	4/6	5/.	9/6	$10 / 6$	201-
100		8/6	10/6	12/6	23/-
200	81	$7 / 8$	11/8	15/-	28/-
400	$8 / 6$	$8 / 6$	13/6	18/8	32/-
600	10/6	11/8	15/6	25/-	35/0
600	12/6	14/-	18/	30/-	80\%

pin configuration to the following: 8LL02-3. IC10 and 1C403. Exch circuit

 F.E.T.' $5 /$ To- 18 up $4 /-$ FE19. Eqvt.
2\$3819, MPP105, etc. $7 / 6$
each. Data suppled. $\frac{\text { each. Data suppled. }}{\text { FULL RANGE OF ZENER }}$ DIODES $\begin{aligned} & \text { VOLTAGE BANGE 2-16y }\end{aligned}$ 400 mV (DO-7 Case) $2 / 6 \mathrm{em}$

All fully tested 5\% tot, and
marked. $\begin{array}{l}\text { state } \\ \text { vequitaged. }\end{array}$
$\begin{array}{l}\text { Bramb }\end{array}$

Pak No. Paked No. Ouaranteed
T1 8 EQVI $\begin{array}{cc}\text { T1 } & 8 \\ \text { T2 } & 8 \\ \text { T3 } & 8\end{array}$ \qquad

$$
\mathrm{Sl}
$$

 Iocorporates a pre-amp
and class A.B. Power amp
stage capable of delivering stage capable of delivering
up to 9 watt
RMS. Fully up to 9 watt RMS. Fully
teated and guaranteed.
gupplied and
 circuit detaimplete and dith
CODED BP. 1010 . OUR LOWEST PRRCE 30%
each. 10 up $25 /-2$.

MOTHER DEvices
BPJ24. Zefo voltage $8 / 6$ ersh.
This device is \triangle monothic Thin revice is a monollthic
I.C. that acts as comblaed
threghold detector and threehold detector and
triger clrcuit for control ligger circuit for control
ling a trac. It is deaigned to pulae the gate of
thyristor at the polot of thyristor at the polat of zero supply voltage, and
therefore ellminate radio therefore ellminate radio
frequency interference when
ured with resistive loads irequency interference when
uped with resistipe lomis.
D13D1 Siltcon Unilateral D13D1 Siltcon Unilate
switch 10 A silicon Planar, mon Withle lategral clroult having thyirator electrical
eharacteristice characteriaticg, but with
an ande gate and a bulltan anne gnte and a bulle-
In "Zener" diode be-
tween gate and cathode. tween gate and calthode.
Pull data and application Pull data and application
circalta available on requent.

MULLARD I.O. A MPLIFIERS
TAA24, Operational amp
Hfier, $70 /-$ ench Hfiler,
TAM263, Linear $A F$ ampll Ther, $18 / 8$ enth TAA293, General purpose
amplifer, $21 /$ each.

QUALITY.TESTED PAKS
6 Matched Trans. OC44/45/81/81D .. 10 20 Red 8 pot AF Trana, PNP.
16
5 Gillico spot Recta. 3 A $100-400$ PI 210 A Blicon Rects. 100 PIV
2 OC1 110 Trans. NPN 12 A gCR 100 PIV
gU. Trans. 28303 PNP 4200 Mer Doden 250 mW 3-12V 3200 Mc/s 84 . Trans. NPN BSY $28 / 27$ 3 Zener Diodes 1 W 33V 5% Tol.
4 Bigh Current Trana. Ocis EqV. 2 Power Transistors 100281 OCS 5 Silicon Rects. 400 PIV 250 mA - Oc7s Tranalutori 1010

OA202 sill. Dlodes sub-min
Low Noise Trans NPN 2 N929/30.
Sll. Trasso NPN VCB
Sil. Trano NPN VCB 100 ZT86 40 O 72 Tranelistor
OC77 Transistora
4 Bil. Rect 400 PIV 600 mA 5 GET884 Trans. EqqL. OCA
5 GET883 Trana. Eqvt. OC4
 10 PNP 1 914 sil. Dioden 75 PIV 75 m 8 OA95 Germ. Dodes sub-min. ING9.
3 NPN Germ. Trans. NKT773 Eqvt ${ }^{3}$ NPN Gerta. Trans. NKT773 Eqvi.
20022 Power Trans. Germ.
\& AC128 Tran Trans. PNP High Gail

- ACl27/128 Comp. pair PNP/NPN 2N 1307 PNP \& witching Trann.
CG82H Germ. Dlodes Eqvi. OA7 3 Apl16 Type Trans............. 4 ACl26 Germ. PNP Trans. 4 sulicon Recta. 100 PIV 750 mA 3 AP117 Trans.
3 OCl71 Trans.
5 2N2926 81.
2N2926 84. Epoy Tran
229701 Spl. Trana. Tex
12 Volt Zenera 400 mW
10 A b00 PIV BLI. Recta. ISA5s

2 N 910 NPN 8il. Trana. VCB 100
1000 P1V 84. Rect. 1.5 A R53310 AF B8Y95A 8LL Trans. NPN $200 \mathrm{Mc} / \mathrm{A}$. 2 811. Power Recta. BYZ13
SLI. Power Trans. NPN $100 \mathrm{me} / \mathrm{s}$.
TK201A.........................
2N1132 PNP Epltaxiai Planar gil. 3 2Nb97 Epllarial Planar Trana, sul.

 BY 100 Trpe sil. Rectanar HPE......... 8iL. and Ger
marked, New

The extensive range of Oxley Snales now include an Eyelet version (which is ideally suited for mounting I.C. Packs and other components for experimental work). They augment the well known standard range of Oxley "Snales" suitable for mounting in 0.040 inches, 0.50 inches diameter holes.

Send for technical details and samples.

OXLEY DEVELOPMENTS CO. LTD.
Priory Park, Ulverston, North Lancs, England
OXLEY Φ

Practical Aerial Handbook

Gordon J. King, Assoc. IERE, MIPRE, MRTS.
In recent years, aerial systems for radio and television reception have begun to assume a new importance. Their efficiency, more than anything else, is the key to dealing with problems introduced by the growing use of the u.h.f. band, the congestion of signals in broadcast bands, everincreasing electrical interference and the need to supply millions of homes with good quality sound and vision signals over a wide range of frequencies. This book examines these problems and, indeed, every practical aspect of aerial work. By far the most comprehensive and up-to-date treatment available, it has been written by an author with unrivalled experience of the whole field. 408000015234 pages Illustrated $54 s$.

回

Available from leading booksellers or:
The Butterworth Group
88 Kingsway, London WC2B 6AB
SOLE U.K. DISTRIBUTORS OF
 PADEL BY INDUSTRY, GOVERNMEN

- Low cost quick delivery o over 200 ranges in stock O other ranges to order

$\mathbf{N E V}$ "SEM'			
CLEAR PLASTIC METERS		BAKELITE PANEL METERS	
1.	TYPE SW. 100	TYPE S-80	
	$100 \times 80 \mathrm{~mm}$.	$80 \text { mm. }$	
50MA 68/6	Sov. D.C. ... 59/6		50v. D.C...... 48/8
${ }^{100 \mu} \mathrm{~A} \times \ldots . . . \quad 67 / 8$	1 amp. D.C.. 59/6	$100 \mu \mathrm{~A}$. 58.6	$1 \mathrm{mmp}$. D.C. ${ }^{\text {a }}$. 48/6
${ }^{50044}$. 62/6	5 smp. D.C. ${ }^{\text {c }}$ 59/6	${ }^{500} \mu \mathrm{~A}$. $52 / 8$	${ }^{5}$ ampu D.C.... 49/6
1 mA 58/6		$1 \mathrm{~mA} \ldots \ldots . . .48 / 6$	300V. A.C. \cdots. $52 / 6$

"SEW" CLEAR PLASTIC METERS

$50 \mu \mathrm{~A}$
$5000-50 \mu \mathrm{~A}$
$100 \mu \mathrm{~A}$
$100-10 \mu$
$1000-10$
$200 \mu \mathrm{~A}$
$800 \mu \mathrm{~A}$
$500 \mu \mathbf{A}$
$5000-0.500$.
1 mA
mimA
$1-0-1 \mathrm{~mA}$
sm

Type Mr.59P. 2fin. gquare fronts.	
	10v. D.C. 40\%
$5000050 \mu \mathrm{~A}$.... 52/.	20v. D.C. 40/-
$100 \mu \mathrm{~A}$. 52/-	80v. D.C. 40 /.
$1000 \cdot 100 \mu \mathrm{~A} . .47 / 8$	300V. D.C. . . . 40%
	16V. AC. 40/
Ima 40/*	300 V A.C. ... 40\%
5 ma 40/-	8 Mcter 1 mA .. 421*
$10 \mathrm{max} \mathrm{......} 40 \$. & VU Meter...... 88/* \hline 50 mA 40 /. & 1 amp. A.C.* . $40 /$ -	
100ma 40\%	$5 \operatorname{amp}$ A.c.* . 40%
800ma 401\%	10 amp . A.a. . . 40%
	20 amp. A.C.* . 40%
$5 \mathrm{amp}$. . 40%	30 amp . A.C. ${ }^{\text {- . }}$ 40/-

Trpe Mr.6sP. 3Hin. $\times 34 \mathrm{ln}$ tronts.

$50-0.50 \mu \mathrm{~A}$
$100 \mu \mathrm{~A}$

$100 \mu \mathrm{~A}$
$100 \cdot \mathrm{~A}$
500 H
100 A

${ }_{500-0-800 \mu A} 00 \mu \mathrm{~A}$
$\operatorname{limA}_{8 \mathrm{~mA}}$..
10 mA
80 mA
100 mA
100 mA
500 mA
50
500 mA
$1 \begin{aligned} & \text { amp. } \\ & 8 \mathrm{amp} . \\ & 10\end{aligned} . .$.
5 smp.
10 smp.
15 smpp.
20 smp.
20 amp.
30 mmp.
50 amp.
50 mmp.
$10 \mathrm{~V} . \mathrm{D.C}$

*MOVING IRON -
 ALL OTHERS MOVING COIL

Please add postage

"SEW" BAKELITE
PANEL METERS

EDGWISE METERS

Type PE.70. 3 17/32in. $\times 1$ 15/38in. $\times 21 \mathrm{id}$ | deep. |
| :--- |
| 50 |

SEND FOR ILLUSTRATED BROCHURE ON SEW PANEL METERS - DISCOUNTS FOR QUANTITIES

U.K. DISTRIBUTORS OF ป N M MUTIMETERS

This range of Multimeters, manufactured by Tachikawa Radio Instrument Co. of Japan, offers excellent value for money combined whth quality and accuracy of measurement. - IMMEDIATE DELIVERY - trade enquiries invited

MD. 120

LAB TESTER
TW. 50k
\star All models fitted overload protection and supplied with batteries, prods and instructions.

500

5025

MODEL TW 20CB	
FEATURES	
	RESETTABLE
	OVERLOAD
	BUTTON
Normally only found on meters costing over $£ 25$.	
A.C. Volte: $0-2.5,10,50,250,1.000 \mathrm{~V}$.	
$\mathrm{Di}^{\text {D.C. Current: } 0.0 .05, ~} 0.5,5,50,500 \mathrm{ma}$.-	
case with carrying handle. Aize $\overline{5} / \mathrm{w} . \mathrm{x}$ tha. \times If in. approx.	
	\&11.10.0 p/p 3/6

${ }^{81 z e}$ MODEL TW-50K Features 46 ranges, mirror acale. Bensitivity 50 k g/Volt D.C. C8. 10.0

A.C. Volts: $2.5,10,25,100,250,600,1,000 \mathrm{~V}$. D. D. Current: $30 \mu \mathrm{~A}, 5,50,500 \mathrm{~mA}$. $\mathrm{F} / \mathrm{L} / \mathrm{G}$

Buzzer Short Circult Check. Senstitvity: 100,000 PV D.C. $6,1,00 \mathrm{~V}$. D.O. Current: 18 . 18. 0

100MEAR. Dectbela: -10 to +49 db . Plastio Case with Carry ing Handle, olze 7 itio.

SOLE U.K. AGENTS FOR JAPAN'S PREMIER MANUFACTURER

- Excellent quality - Low price - Immediate delivery

ALL MODELS

INPUT 230 VOLTS, 50/60 CYCLES.
OUTPUT VARIABLE 0-260 VOLTS
MODEL S-260
General Purpose
Bench Mountlng

1 Amp	c5.10.0	MODEL S-260 B
2.5 Amp	C6.15.0	Panel Mounting
5 Amp	¢9.15.0	1 Amp $\quad 15.10 .0$
8 Amp	\&14.10.0	2.5 Amp \quad E6.12.6
10 Amp	\&18.10.0	Please add postage.
12 Amp	L21.0.0	Please add postage
20 Amp	¢37.0.0	Speclal dlscounts for qualliy

ELECTRONIC

NEW 6-CHANNEL TIME AND EVENT RECORDER

A self-contained instrument, specifically for recording events without the need for a combined recorder.
There is a separate and independent paper drive, with a monitor lamp indicating when it is In operation. The pens are displaced $1 / 16^{\prime \prime}$, activated by a close contact system. Each of the 6 channels works independently of each other, with the pens writing at 72 hours per flling at a maximum speed of 10 pulses per second.
The recorder is supplied either in a portable cabinet or with rack mounting adaptions and the size is $15^{\prime \prime} \times 9^{7} \times 9 \frac{1}{2}^{\circ}$ deep. It weighs 10 lb . and is avalable In $220-240$ volt A.C. (50 cycles) or $110-115$ volt A.C. (60 cycles). The 6 -channel time and event recorder is available at the following speeds: $30,20,10,5,1$ per minute. 18, 12, 9.6 per hour. Width of paper rollis $6^{\prime \prime}$, maximum diameter of roll Is $3^{\prime \prime}$, length on standard $3^{\prime \prime}$ dlameter paper roll Is 200'. Price of the event marker is $£ 79-10-0$, plus $£ 5-0-0$ for the special vinyl-treated portable case.
The instrument is guaranteed for one year, and is avaliable with a complete range of accessories, including teledotos paper, graphic paper, plain paper, pens, pen containers and time bases. Prices of these Items are available on application.

COUNTERS

VEEDER ROOT 6 DIGIT COUNTER
Quilable for counding all kildn of pro-
ductlon ruma, busing duct lon runa, bus inets machine opera-
tion. Mectanicalls dryen Type KA1337.

MINIATURE

SQUARE
6 DIGIT
By Veader Root. Rotary ratchet trye
adds 1 count for each $3 \mathrm{~B}^{\circ}$ movement ${ }_{\text {thate }}$ 8/6 plus $2 / 6 \mathbf{P} . \Delta \mathbf{P}$.

6 DIGIT ELECTRICAL

IMPULSE COUNTER With electricil and mechanical resee.
Counter driven by

 plus $5 / \cdot \mathrm{P}$. \& P P. equipment. Price $58 / 6$

EAC DIGIVISOR MK. II
DIGITAL READ-OUT
DISPLAY
 devices. No need for ampliters or relay
 required ${ }^{20}$ eharize the dilite. The
DiOIVIso B incorporate a moving coll Diovivis R incorporated a moving col
movement which moves a translucent scale hirough an optical Is sumem nad the resultant tingle plane ininge in projected

${ }_{8}{ }_{8} \mathrm{gas}$
BERKELEY DECIMAL COUNTING UNIT 0.9
t valves donble triode type 6965 apecial quallty Unlt pluge into atandard octal base, Modular construction with 10 ministure neoz

Miniature digital DISPLAY
Operatee on a rear projection 6.3 pllo harap. The lamp projectathe correapond a projector lens, on to the siewing screen, at the froat of the unit. 1 kn .
 0.9 with \& right hand deccmal polnt and
degree. Avallable to apectal order, word degree. Avallable to apectal order, word
and other charncters or colour, at cost of and other charncters or colour, at cost of

5 DIGIT COUNTER

A very sturdy ronnter. Coll resistance 100 ohms. Minimum
 and frequency meter $35 /-\mathrm{p}$. \& p. $8 /$.

ALL ORDERS ACCEPTED SUBIECT TO OUR TRADING CONDIPREMISES DURMO TEADING HOURS OR WILL BE SENT ON PREMISES DURMO TRADING HOUR.
APPLICATION THRODGH TEE POST.

HIGH GRADE COMPONENTS

DOUBLE A UDIO FADERS
IW
1000 plus 1000 ohms. Each resiative 1000 plus 1000 ohms. Each restaneriaduatable and independent o each other. Ex-equipment but in an
almosi new condition. Price $£ 3 / 18 / 8$.

DIMMERS
SCR Type. 600W. F.W. Bridge circult sultable epeed control A.C.
 box. E8/6. P. \& P. B/.
VOLSTATS
VOLSTATS and conatant roltage trangormera. Large range to atock Priceo from $28 / 10 / 0$.

OSCILLOSCOPES

Solartron CD513 solartron CD 513/2 Solartron AD 587 Solartron CD 711 Solartron CD 7118-2 Solartion QD 910 Solartron s238-2 Furzchlll 0.100 Alrmec 249.
 Alrmec 723.
 Phillipn PM $\$ 230$
 Mullard Lio1 Double Beam Cobsor 1035
 Consor 1049 Mkili Consor 1049

 E35. 0

MOTORS

HYSTERESIS REVERSIBLE MOTOR
Incorporating two coll. Each coll when energlsed will produce

HIGH TORQUE INDUCTION MOTOR

LOW TORQUE HYSTERESIS MOTOR MA 23

 Ideal for linatrument chart drives. Eintremely quiet, usefil in area relative high tnertia loads to be driven up to 6 ooz/lin. Available in

 r.p.m., $1 / 18$ r.p.m... $1 / 18$ r.p.m. $1 / 20$ r.p.m., 1/24 r.p.m... $1 / 30$ r.p.rn., $1 / 60$ r.p.tn., $1 / 120$ г.p.m.., $1 / 240$ r.p.m., $1 / 300$ r.j.ra., $1 / 720$ г.p.m.,
1/440 r.p.ra. $25 /-$ each. P. $\&$ P. $3 /$.,

HYSTERESIS CLUTCH MOTOR

With lntegral clutch allowing the motor to drop out of engagement with the gear train, thereby facliftating easy resetting wben used in
tiraern or in confunction with a light apring. 6 oz, torque at 1 r.p.jn.

HIGH PRECISION MAINS
MoV 30 Bz $1 / 8 \mathrm{hpp}$. continuonsly rated.
3000 p.p.m. Maile by Coydon Engineero 3noo r.p.m. Maile by Croydon Engineer lag. Model KA 60 JFB. Sulable for capitan motor. Size 8 in. long, it in.
diameter with 6 in. dianoter flange and taxing holes. et $4 / 1010$ each. P. i P. $23 /$..
 SYNCHRONOUS MOTORS
 Equlpinent. 40/\%. P. OATA TRANSMISSION-SYNCHROS $\underset{\text { THpe }}{\text { Maker }} \underset{\text { Vollowe }}{\text { Hiz Price }}$ Torque Recelver Tupe
Torque Recelve
Torque Recelve Torque Recelver ACN 1550 OC Spith Control Tranformer 11 TR + R P Pulla $\begin{array}{ll}\text { Control Tranaformer 11CT }+ \text { RT } & \text { Mulrinead } \\ \text { Contmi Tranaformer } 26 \mathrm{rosT}\end{array}$ Control Traneformer 11CT4b Controi Transformer 110 X da Control Trankformer 110X tb Torque Tranamitter ACB/AE
Torque Tranamitter 11CX ta Torque Transmitter 15M181 Mnlirhead
 CARRIAGE EXTRA
A.C. MOTOR GENERATOR

Type 01005 Motor 8 Epec. 6000 r.p.m. Torque $25 \mathrm{gm} / \mathrm{cm}$. Control
 Ref. Winding 26 -., 40 Ris.
Price $£ 7 / 10 / 0$ p. $\&$ p. 8%.

SYNCHRONOUS MOTOR WITH GEARBOX Motor 11 M83 zearbox type 11 H 21 . Thia unit le an 8000 r.p.m.. 118 F .。 $400 \mathrm{H}_{2}$ motor fitted with concentric epleycle reduction gearbox of 9.82/1, Mo
diameter.

EVERSHED VIGNOLES
SPLIT FIELD SERVO MOTOR
Type FBGA-A1/B i in. keyed shatt. Price $812 / 10 / 0$ each.

GENERATORS

SIGNAL GENERATOR
T.F. 801 A Bine Wave, Bquare Wave Generator. Prequency Range:

and carriage $£ 2$.
T.F. $517 \mathrm{~F} / 1 \mathrm{sine}$ Wave, Square Wave Generntor. Frequency Range: $120-300 \mathrm{M}$. C/s Auxilisiry $18-58$ Meg. c/s. Output Voltage 0.2 Volts.
MARCONI T.F.I44G
Frequency Range $85 \mathrm{kc} / \mathrm{s} 251 \mathrm{c} / \mathrm{m}$. Output voltage 1 metcrownolt to 1 vott. Output impedance 1 melero-volt, 100 millt-volt, 10 ohms. PU milli volts to 1 volt, 82.8 ohn
Model 101 Zepetition rate $105 \mathrm{~Hz}-10 \mathrm{MHz}$. Delay $30 \mathrm{n}-10 \mathrm{~m}$. secs.
Frequencles: 1 M 100ke/s $10 \mathrm{ke} / \mathrm{a}$ s $0 \mathrm{c} / \mathrm{t}$. Load impedance 76 ohms. Output Voltage 10 V 78 ohms 0.18 volts into 2000 ohmal. Rise time from $30-50 \mathrm{Milli}$ micro seconds at 1 meg . Cycle. $\mathrm{e} 58 / 10 / 0$.

BRE\|ㅆ)KERS

MEASURING INSTRUMENTS AND RECORDERS

PORTABLE AC/DC
PEN RECORDER
A mon veratile pear reconier. Produces

 high and/or low preser Yaluet. Hange:
0 . IMA D.C. Meter Resitanand
 600 ohm Impethince Bouree. Chare opeed: curitilinest. Power supply: ${ }^{230 \mathrm{~V}}$
 Price: $£ 52.10 .0$.

STRIP-CHART INDICATING RECORDER

 6 in. per hour. Single point. 849.10 .0 .
P. available

SERVORITER Model FWS By well-known American manulacturer, Power supply, Resistance source 10 K ohmp nax. Chart width 11 ln . This is a
alowapeed recorder that can be used for alowapeed recorder that can be used for
meanuring any quantity with a comparatively alow rate of change such as
cemperature, humldity etc. Buppled with electrovolt controller that enable, the sensitivity, reset, proportional band onables the demanded temperature to be controlled and the actual temperature
 13 in. deep. Price 9175 . Cantlage extre

METERS

DIGITAL VOLTMETERS
meno22 digital Reading rate of so per second. Outputa: Parallel B.C.D. acale
 This if a rape opportunity to obtain nuch an tidetrument at snch a Duale gas9. ID.C. accuracy 0.0177..... with a D.C. range of $10 \mu \mathrm{~V}$ to

 d75. Al the mbore units have been calibrated. Dig . 1 KV . 4 digits.

A.C. CALIBRATION UNIT TYPE 2126 L.F. amplitier module A3 and mean
detector modrile B3. Both unlta housed detector modnle B3. Both units
in one cabinet. Price f110.010.
Precision A.C. D.
 Carriage $30 /$..
MULTI-RANGE TRANSISTORISED VOLTMETER 1063
Employlng sillicon planar P.E.T., this instrument glves long-term
Btablity and negligible dritit over atablity and negigible drist over a wide temperature range. Wide
frequency band $0-309 \mathrm{MHz}$. using HPV . 1063 . Voltage range $0-30 \mathrm{KV}$. Centre zero on DC rangen for difrerenthal circuit application. Input rebintance I M.ohnivith on all DC runges. Accuracy $\pm 3 \%$ F.S.D. Meter scale Bin. with IM different colour for diferent acale

PRECISION POTENTIOMETERS

TEN TURN 3600° ROTATION
BRAND NEW

	Lirearily			
Ree Ohms	Per cent	Manufacturer	Model P	
100/100/100		Beckman		
	. 0.5	Beckiman	A.s.	B0/-
200	0.5	Beckman	A.	
	0.1	Beckman		701
500		Colvera	2501	451
500		Poxes	PX4.	401-
500		Colvera	. 2610	50/=
500		Colvern	26/1000/11	60/-
500		Relcon.	.HELI07-10	45/-
1 K		Relcon	HEL0710	45/-
2 K	0.a	Beekmun	8A1101	801-
2 K	0.25	Beckrman	. 7216.	60/-
2 K		Reliance	GPM15	
2 K		General Cont	.aPalb/4..	401.
5K		Relcon.	.07-10....	501.
5 K		Colvera	CLR2503.	801-
10K	0.8	Beckrman		
10 K	0.1	Beckiman X	A	70/-
10 K	0.1	Colvera.	.CLR26/1001	1 701-
18K		Colvern	CLR2402. .	601-
18K		Becktman		801-
$25 \mathbb{K}$	0.5	Hellipot	8AJ337	60/-
29 K	. 0.05	Beckrman	.8A12+4	
30 K		Colvern	24.2	
30 K		Beckmana	8495C.	80/-
30 K	0.1	Becknian	A. 88	$70 \cdot$
30 K	. 0.5	. Becktras.	81692 .	
30 K	0.28	Becktman.	8A1679 ...	65/-
30 K	. 1.0	Colvern	2402/1	$301-$
30K		. Rellance	07.10	451*
50 K			07.5	45/-
s0K		Colvera	2503.....	4510
50 K	x	Foxes	PX4	45/-
80 K	. 0.5	Beckman		
50 K	0.1	Beckman		70/-
$100 \mathrm{~K} / 1$		Ford		1001-
100 K	. 0.1	.Beckman		
100K	0.5	Beckman		601
100 K		. Colvera	2501.	45/-
100 K		Colvera	2810	50%
298 K	0.1	Beckiman	843902	70\%
300 K	0.1	Beckman		70\%
THREE	RN 780	ROTATIO		
100/100		. Beckrman.		60/-
100/100		Beckman.	Type 0....	60\%
300		Beckiman.	9303.	45/-
1 K		Fox	PX2/E3.	45/-
10K	. 0.6	Beckman	c.ea	45/-
$20 \mathrm{~K} / 20 \mathrm{~K}$	0.1	Beckm	0.8......	60\%
$10 \mathrm{~K} / 10 \mathrm{~K}$. 0.1	Beckiua		60/=
		Beckm	$0 .$	35/\%

NUMICATORS
Cold cathode gas-flled, in-Iline $0-9$ digit
display tubes. Long Ilfe expectanc display tubes. Loog, IIfe expectancy,
Mindmum etrikipg roltare Isov. Blde Mindmum etrikips roltage 180 w . Blde
reading type XN 13. Price $18 / 6$ each. reading type XN 13. Price $18 / 6$ each.
P. \& P 2/6.
Type NI 1. End reading. Price 81 each.

MERCU

 TWENTY TURN 7200 ROTATION
 FIVE TURN 1800 ROTATION

 SINE COSINE

alue:	Type	Maker	Pr
8 Kohms	CLR 8801	Colvern	217/10/0
14 Kohms	SCP 5	8mith	282/100
15 Kohms	CLR 8601	Colvern	217/10/0
205 Kohms	CL8 8602	. Colvera	E22/10/0
25 Kohma	CLR 9R02	Colvern	E17/10/0
30 Kohma	CLR 8601	Colver	21710/0
32 Kohm	SCP 4	Kelvin-	ع17/10/0
35 Kohms	SCP 1	Enuthe	$817 / 1010$

INDUCTION POTENTIOMETER No. I Mk. Can be used for multiplication, flivision, and recitrocal calculntions Accuracy 0.1%. Octagonal in shape 6 for. mero the fan. Pri COLVERN IO-TURN INSTRUMENT DIALS

BOURNS KNOB POT

Now ioturn prechetion potentiometer readout dial th one extremely compact anembly. A very attractive unit vailable in 100 K , miz with white dial. Resiatance tolerance 5% Accuracy Werrelation of dial reading to $0 / P 0.5 \%$. dimmeter o in. New price 87.15 .0 eme

 bounce or chather in the electmeal elireuts: cury pool In a glasa capaule elministes

VARIABLE VOLTAGE TRANSFORMERS

HIGH VALUE RESISTANCE
BOXTYPE R. 7003
8pecifcation. RRage: $0.01+111$ Meg. In
0.01 Megohn divion. Accury
0.05% Masimum power rating: 0.1w:

BLE WHEATSTONE BRID
PORTABLE WHEATSTONE BRIDGE

 Galvanometer acale: $10-0.10$. Case: Moulded Plantle. Interna
Source: \boldsymbol{V}. Dry betters. Dimenslona: $200 \times 110 \times 65 \mathrm{~mm}$. Wheight: 0.9 kg . Lat price $\mathrm{Et25}$. Our price $£ 9 / 19 / 8$.

MUTUAL INDUCTANCE COIL TYPE R. 7006 Specification. Value: 0.001 H . Accuracy: $\pm 0.3 \%$. Operating Fro-
 price $80 /$ -
MUTUAL INDUCTANCE BOX TYPE R. 7005 Specifcation Rasige: $0-11.100 \mathrm{mH}$ in
0.002 mH divigions. $\mathrm{Accurac}: \pm(0.3 \times$ $\left.\frac{0.012}{M}\right) \%$ where $M=$ value of mutual taductance in mH set on the hox. Frequency range: $0-2.5 \mathrm{Kc} / \mathrm{s}$ for all decade current: 0.5 A for decaden 1 A for vario meter (both primary and eecondary winginge). Case: Polished tenk
price R65. Ouf price e26/10\%O.

Wilkinsons FOR RELAYS

PIO. STANDARD EQUIPMENT RACKS
 tone adiuster, $7 / 6$ each as illustrated. Quantity with
Rates. EQUIPMENT WIRE P.Y.C. covered 80/- par 1000
 HEADPHONES 1600 Ohms EyPe DHR $17 / 6$ LEDEX ROTAAY SOLENOIDS AND CIRCUIT SELECTORS. SIZE 5s. A pole, 11 way and off $110 / \mathrm{F}, 4$ pole,
 CERAMIC AND PAXOLIN WAFER SWITCHES available from stock at keen prices send for list. 24 , way
Double Pole Pax Waler Swisches $12 / 6$ each. post $2 / 6$. Single Pole Change Over Roller Type MICRO SWITCHES $15 \mathrm{mmp} 125 / 400$ volts A.C. Honeywell $10 / 8$ ea.
ONE HOLE FIXING SWITCHES. Single Pole On/OHI
 Blased OH, NSF $3 / 6$ ea. Ball Dolly Biased On, Bulgin $3 / 6$ ea.
 $1 / 6$ ea. Pear Dolly. Arrow. $2 / 6$ ea. Double Pole On/ OH
1 amp. 250 volt Ball Dolly. Arrow $2 / 6$ ca. 3 amp. 250 volt Ball Dolly, Bulgin $3 / \%$ ea. Double pole Change Over 1 amp. 250 volt, Arrow $3 / /$ ea. Pear Dolly, Arrow $3 / /$ ea. 3 amp.
250 volt Pear Dolly, NSF 3/6 ea. BANK OF FIVE 250 volt Pear Dolly. NSF $3 / 6$ ea. BANK OF FIVE
SWITCHES ON/OFF 6 hole fixing flush bakelite case 14/: ea.
TEMPERATURE CONTROL SWITCHES. Casing $b^{\circ} x$ square Gravinette 3 types 17 degrees C. or 18
degrees C. or 21 degrees C. 51 - ea.
 $14 / 6$ each.
$4 C_{\text {non-lock }} / 6 C$ lock 14. non-loa.
20/- each.

ONE HOLE FIXING. Stop/4 C.O. non-locking
2 position $10 / 6$. $6 \mathrm{C} . \mathrm{O}$. lock/2 lock 2 position $17 / 6$. P.O. TYPE 3000 AND 600 BUILT TO YOUR REQUIREMENTS - QUICK DELIVERY

COMPETITIVE PRICES-VARIOUS CONTACTS DUST COVERS-QUOTATIONS BY RETURN LARGE STOCKS HELD OF G.E.C. MINIATURE SEALED RELAYS

L
TERMINAL BLOCKS. 2 way 5C/430
or 3 way $5 \mathrm{C} / 43250 /=$ per 100 or $\mathbf{C 2 0}$

VACUUM GAUGES

VACUUM GAUGES. 2 in . scaled. O/30 inches of mercury,
20/. each. post 216.
DIRECT ON LINE STARTERS. Craberee Bi5 Coil
$240 / 265$ SO OIRECT ON LINE STARTERS. Craberee BI5 Coil
$240 / 265$ V. 50 cycles max. motor load 15 A .440 v., overload AMAZINGVALUE.I/6th hp G.E.C. Fractional hp MOTOR $230 / 250 \mathrm{~V}$ A.C., fitted with thermal protector with push button reset, ensures complete protection against overheating
or burn-out, $1440 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Iin. Shaft 1 tins. Iong. Fully guaranteed $97 / 6$, Carriage 15/-.
GEARED MOTORS. I r.p.m. or 3 r.p.m. 4 watts very powerful, reverstble $2 i \mathrm{v}$. A.C. $35 /$ /, post $2 / 5_{\text {, }}$ can be oper-
ated from 230 v . with our $20 /$ Transformer. Post $5 / /$. AIR BLOWERS, $200 / 250 \mathrm{v}$. A.C. Eylindrical Tin.In. suitable for intake or extraction. $/ 50$ th h.p. Elo.
$1 / 15$ th h.p. ell. $1 / 10 \mathrm{th}$ h.p. E14. Stockists of seuare TurnerCentrifugal Pumps. Nos. 9, 10 and 12, Details available. HIGH SPEED COUNTERS COUNTERS
$3 i+1 \mathrm{in} ., 10$ counts per ligures. The
lollowing D.C.
logen lollowing
D.C.
voltages
available,
are
6v. voltages
available,
12

50 v . or 100 v .
SUB-MINIATURE Microswitch Honeywell S.P.O.T type 11 SMI TN 13 size If. x fin. x tin. $6 / 6$ each, or
mounted in fives for $22 / 8$ post free. JACK PLUGS. 2 Point with 3crew-on cover, 2/6, post 9d.
 PLUG-IN RELAYS, Londex 4 change 88 y . D.C. with base and cover, 4 change-over HD coneacts UNISELECTORS. 8 bank, 25 way, full wipers, 67.10 each. CARLEY Miniature Relays. 700 ohms $4 \mathrm{CO}, 15 / 6 \mathrm{ea}$. BELL SETS. No. 25 Twin Gong Bell Induction coil and
condenser with cover $17 / 6 \mathrm{ca}$. post $6 / \mathrm{m}$.

MAGNETIC COUNTERS. Veeder Root with zero reset 800 counts per minute, counting to 999,999 . I10 volts A.C PRECISION GERMAN MADE MAGNETIC COUNTERS. 2 tin. x thin. x lin, with push button zero reset. 3 digits, 12
volts D.C., $25 \mathrm{imp} / \mathrm{sec}$., $50 /-$ ea. METERS GUARANTEED. Complete list available.
 Microamps $0 / 500$ 2in. MC.... 25/6 Microamps $0 / 5002 \mathrm{kin}$. MC
Milliamps $0 / 502 \mathrm{kin}$. MC Milliamps $0 / 502$ tin. MC. Milliamps $0 / 50031 \mathrm{in}$. . MC
Amps $50-0-502 \mathrm{in}$. MC.... Amps $0 / 52 \mathrm{in}$. MC. Volte $5 / 0 / 52$ in. MC
Volts $0 / 202 \mathrm{in}$. MC.
Volte $0-402 \mathrm{in}$. MC
Volte $0-40$ 2in. MC
Voles $0 / 10$ A.C. 3/in. MCR42/6
"VISCONOL-CATHOORAY" CONDENSERS. OO $05 \mathrm{mfd} 5 \mathrm{kV}, 91 / ; 0.1$ mid 4 kV , $9 /=; 6 \mathrm{kV}, 17 / 6 ; 0.5 \mathrm{~m} / \mathrm{d}$.
 PORTABLE VOLTMETERS $30 v$ moving coll DC precision
 scale in P. wood case 64.19 .6 , post $7 / 6$; 250 v moving iron $A C / D C$ 6in. scale in p. wood case 68 . 10.0 , pose $7 / 6$.
CELL TESTING VOLTMETERS $3-0-3 \mathrm{~V}$ moving coil DC CAMBRID prods. in leather case 3 in. scale $35 /$ R rade AC moving iron 7in. scale ranges-50, $100,200,500$ nd, 00 ma. enclosed case R2, pose $10 / 6$.
PORTABLE AMMETERS 0-3 A. moving iron ACIDC 3in. calo in case, 35/: ex., post 4/\%.
MEGGERS, SERIES 2.500 yoles, range $0 / 100 \mathrm{Meg}$ ohms-infinity. Metal case. Complete with test leads in leather case with
strao c37.10. cge $12 / 6$.

ELLIOTT CENTURY TEST SETS. First-grade, reading Absolute. D.C. voles . $075,3,30,150,300$ and
$750(F S O ~$
$20 \mathrm{~mA})$ and Absolute $0 . C$. amps $1.5,15,150$ and 600 (75 mV) on 5 in. Mireror scale. Wood case, with
shunts in fitted compartment, 25 , cge $15 /$.
L. WILKINEON (CROYDON) LTD LONGLEY HOUSE LONGLEY RD. CROYDON SURREY one: $01-6840236$

LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance $2.5-600$ ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $£ 87 / 10 /-$ each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
*SET OF VALVES : new, $£ 3 / 10 /$ - a set, post $7 / 6$; SPEAKERS: new, $£ 3$ each, post $10 /$-. *HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; $17 \& 18 ; 23 \& 24$; and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K.98034-1, $3 \times 0.05 \mathrm{mfd}$. and M. 980344 , $3 \times 0.01 \mathrm{mfd} ., 3$ for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of $3,10 /$-, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., £2 each, $4 /$ - post. Output transformers $901666-50127 / 6$ each, 4/- post.

- Available with Receiver only.
S.A.E. for all enquiries. If wishing to call at Stores, please telephone for appointment.

MARCONI SIGNAL GENERATORS

TYPE TF-I44G

Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $+/-1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements: $19 \ddagger \times 12 \ddagger \times 10$ in. The above come complete with Mains Leads, Dummy Aerial with screened lead, and plugs. As New, in Manufacturer's cases, £40 each. Carr. 30/-. DISCOUNT OF 10% FOR SCHOOLS, TECHNICAL COLLEGES, etc.

HRO RECEIVER. Model 5T. This is a famous American High Frequency

 superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Complete HRO 5T SET (Receiver Set of 5 Coils \& Power Unit) for $£ 27 / 10 /-$, carr. 30/-COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $\mathrm{C} 5 / 10 /$ each, post 5/-
COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25W output, directly calibrated. Valves $2 \times 1625 \mathrm{PA} ; 1 \times 1626$ osc.; 1×1629 Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $\$ 3 / 10 /=$ each, $10 /-$
post.
Conversion as per "Surplus Rad
AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6 A K 5$; and $1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec, only $£ 3$ each, $7 / 6 \mathrm{pcst}$; or Rec. with 24 v . power unit and mounting tray ex/10/- each, $10 /-$ post.
RECEIVERS: Type BC-348, operates from 24 v D.C., freq. range 200-500 $\mathrm{Kc} / \mathrm{s}, 1.5-18 \mathrm{Mc} / \mathrm{s}$. (New) £35.0.0 each; (second hand) $£ 20.0 .0$ each, good Kc/s, $1.5-18$ Mc/s,
condition, carr. $15 /$ both types.
MARCONI RECEIVER 1475 type 88: $1.5-20 \mathrm{Mc} / \mathrm{s}$, second-hand condition M10.0.0 each. New condition £25.0.0 each, carr. $15 / \mathrm{m}$.
RACAL EQUIPMENT: Frequency Meter type SA20: $£ 35$ each carr. £1. Frequency Counter type SA21: £65 each, carr. 30/-. Converter Frequency Electronic VH

ROTARY CONVERTERS: Type $8 \mathrm{a}, 24$ v D.C., 115 v A.C. @ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $\varepsilon 8 / 10 /=$ each, $8 /-$ post. 24 v D.C. input, 175 v D.C @ 40 mA output, $25 /-$ each, post $2 /-$.

CONDENSERS: $150 \mathrm{mfd}, 300 \vee \mathrm{~A} . \mathrm{C} ., \mathrm{s} 7 / 10 /-$ each, carr, $15 /-40 \mathrm{mfd}, 440$ v A.C. wkg., $£ 5$ each, $10 /-$ post. $30 \mathrm{mfd}, 600 \mathrm{v} \mathbf{w k g}$. D.C., $£ 3 / 10 /-\mathrm{each}$, post $10 / \mathrm{F}$ $15 \mathrm{mfd}, 330 \mathrm{v}$ A.C. Wkg., $15 /-$ each, post $5 /-10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6$ each, post $2 / 6$. $10 / 6 \mathrm{each}$, post $8 / 6$ each, post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-\mathrm{g}$ mfd, 600 v each, post $7 / 6.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /-$ each, $1 / 6$ post. 0.01 mfd . MICA 25 Kv . Price £1 for 5 . Post $2 / 6$. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$ wkg. $£ 3.15 .0$ each, $10 /-$ post.

OSCILLOSCOPE Type $13 \mathrm{~A}, 100 / 250$ v. A.C. Time base $2 \mathrm{c} / \mathrm{sin}-750 \mathrm{Kc} / \mathrm{s}$.
Bandwidth up to 5 Mc .
Calibration markers $100 \mathrm{Kc} / \mathrm{s}$, and $1 \mathrm{Mc} / \mathrm{s}$. Double Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $£ 22 / 10 /-$ each, $30 /$ carr
COSSOR 1035 OSCILLOSCOPE, £,30 each, $30 /$ - catr
COSSOR 1049 Mk . 111, $\mathbf{~} 45$ each, $30 /$ carr.

RELAYS: GPO Type 600 , 10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M ., 22 each, $6 /-$ post.
12 Small American Relays, mixed types $£ 2$, post 4/-
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach; etc. Prices and further details on request 6 d .

GEARED MOTORS: 24 v. D.C., current 150 mA , output 1 r.p.m. $30 /-$ each, 4/- post. Assembly unit with Le
meter, 3 r.p.m., £2 each, 5/- post.

SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 /-$, post $5 /$-.

SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $£ 2 / 10 /=$ each post 6/-

CONTROL. PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., $£ 2 / 10 /-$ each, carr. $12 / 6$.
 Price (either type) $£ 2$ each, $4 / 6$ post each.

TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s ; complete wish filament transformer 230 v. A.C. Mounted in 19 in . panel, $£ 4 / 10 /$ - each, $15 /$ - carr.

POWER SUPPLY UNIT PN-12A: 230V a.c. inpur $50-60 \mathrm{c} / \mathrm{s}$. 513 V and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and $2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and 5 V @ 9 Amp and 4 V @ 0.25 Amp . Mounted on steel base $19^{-W} \times 11^{\circ} \mathrm{H} \times 14^{\circ} \mathrm{D}$. (All connections at the rear). Excellett condition £6.10.0. each, Carr. £1.

AUTO TRANSFORMER: $230-115 V, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong steel case $5^{\prime \prime} \times 61^{\prime \prime} \times 7^{\prime \prime}$. Bitumin impregnated. £5 each, Carr. 12/6. 230-115V,
$50-60 \mathrm{c} / \mathrm{s}, 500 \mathrm{watts} .7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\circ}$. Mounted in steel ventilated case. \&3. each, Carr. 10/-.

POWER UNIT: 110 v. or 230 v , input switched; 28 v. @ 45 amps. D.C. output. Wt. approx, $100 \mathrm{lbs} .$, £ $17 / 10 /-$ each, $30 /=$ carr. SMOOTHING UNIT'S suitable for above $£ 7 / 10 /$ - each, $15 /$ - carr.

DE-ICER CONTROLLER MK. III: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay 4P, C/O. (235 ohms coil). Stud switch 30-way relay operated, one five-way ditto, D.C. timing motor with Chronometric governor 20-30 v. 12 r.p.m.; geared to two 30 -way stud switches and two Ledex solenoids, 1 delay relay etc., sealed in steel case ($4 \times 5 \times 7 \mathrm{ins}$.) $\mathbf{~} 3$ each, post $7 / 6$.

MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves,
microphone and modulator transformers etc. $£ 7 / 10 /-$ each, $15 /-$ carr.

NIFE BATTERIES: 4 v. 160 amps , new, in cases, £20 each, £1 $10 /$ carr.
FUEL INDICATOR Type 113R: 24 v. complete with 2 magnetic counters -9999, with locking and reset controls mounted in a 3 in . diameter case. Price 30/-each, postage 5/-.
FREQUENCY METERS: BC-221, meter only $£ 30$ each, BC-221 complete with stabilised power supply £35 each, carr. $15 / \mathrm{m}$. L.M13, $125-20,000 \mathrm{Kc} / \mathrm{s}$., £25 each, carr. 15/-. TS.175/U, £75 each, carr. £1
CANADIAN HEADSET ASSEMBLY: Moving coil headphones 1000 , with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New condition. Price $35 / \mathrm{m}$ each, post $5 /-$,
AUDIO OSCILLATOR 382/F: Input 115 v . A.C., $50 \mathrm{c} / \mathrm{s}, 20-200,000 \mathrm{c} / \mathrm{s}$ per sec. in 4 ranges. Cont, wave. Output $0-10 \mathrm{v}$. in 7 ranges. Power output 100 mw . Output impedance 1,000 . $£ 27 / 10 /-\mathrm{cach}$, £ 1 carr .
RACK CABINETS (totally enclosed) for std. 19in. panels. Size: 6ft. high x 21 in . wide $\times 16 \mathrm{in}$. deep. With rear door, $£ 12$ each, $£ 2 / 10 /=$ carr. OR 4 ft . high x 23 in . wide $\times 19 \mathrm{in}$. deep. With rear door. $88 / 10 /-$ each, $£ 2$ cart.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EGI (CV1526) colour green, medium persistence complete with nu-metal screen, £3/10/- each, post 7/6. APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$, com= plete with all valves 28 v. D.C. 3 relays, 11 valves, price $£ 3$ each, carr. $10 /-$.

CANADIAN C52 TRANS/REC.: Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc., pewer input 12 V . D.C., new cond.,
complete set $\mathbf{5 0 0}$. Carr. £2/10/-. Power Unit for Rec., new $£ 3 / 5 /-$. Carr. 10/-.

DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \%$ e3 each, $5 /-$ post. 90 ohms per step. 10 positions,
total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% \quad £ 3 / 10 /-$ each, $5 /-$ post.

TELESCOPIC ANTENNA: In 4 sections, adiustable to any height up to 20 ft . Closed measures 6 ft . Diameter 2 in . tapering to 1 in . 85 each $+10 / \mathrm{F}$ carr. Or £ 9 for two $+£ 1$ carr. (brand new condition).

COAXIAL TEST EQUIPMENT: COAXWITCH—Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N" female connectors fitted to receive UG-21/U series plugs. New in ctns., $£ 6 / 10 /-\mathrm{each}$,
 Type M1460-4. (New) £6/10/- each, $4 / 6$ post.

PRD Electronic Inc. Equipment: FREQUENCY METER: Type $587-A$, $0.250-1.0 \mathrm{KMC} / \mathrm{SEC}$. (New) £75 each, post $12 / 6$. FIXED ATTENUATOR: ATOR: Type $1157 \mathrm{~S}-1$, (new) \& 6 each, post $5 /$-.

FOR EXPORT ONLY BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

Type B. 44 Tx/Rx, Crystal controlled, $60-95 \mathrm{Mc} / \mathrm{s}, 12 \mathrm{~V}$. d.c. operation. W.S. Type 88, Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type HF-156, Mk. II, Crystal controlled, 2.5-7.5 Mc/s. W.S. Type 62, tunable, $1.5-12 \mathrm{Mc} / \mathrm{s}$. C.44, Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}, 50$ watts, output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, $144-174 \mathrm{Mc} / \mathrm{s}$, 50 watt, narrow band width. A.C. input 115 V . BC-640 Tx, $100-156 \mathrm{Mc} / \mathrm{s}, 50$ watt output, 110 V or 230 V input. STC Tx/Rz Type
9 X , TR1985; RT1986; TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, 9X, TR1985; RT1986; TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T.14 and R.19, FM 60-90 Mc/s. With associated equipment available. Redition GR4
Collins Tx/Rx/Type $18 S 4 \mathrm{~A}$. Collins Tx/Rx Type ARC-27, $200-400 \mathrm{Mc} / \mathrm{s}, 28 \mathrm{~V}$ d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Ty/Rx. BC- 375 ; $433 \mathrm{G} ; 348 ; 718 ; 458 ; 455 \mathrm{Tx} /$ Rx. Dlrectional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares. Telephone Installation type XY, (U.S.A.), 600 Line Automatic Telephone Exchange. Complete system with full set of Manuals. Mobile Communications Installation mounted in a trailer with $4 \times$ pneumatic tyres. Consisting of $3 x$ ARC-27 Tx/Rx with all associated equipment (as new).

ALL GOODS OFFERED WHILST STOCKS LAST IN "AS IS" CONDITION UNLESS OTHERWISE STATED

SUPER-BARGAIN STOCKTAKING SALE!!

Use form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY.
If any sale item is 'sold-out' when order received we shall substitute items of equal value. ELECTROLYTIC CAPACITORS

Capacity	Voltage	No. required	Stock No.	$\begin{aligned} & \text { Price } \\ & \text { s. d. } \end{aligned}$	\& s. d.	Capacity	Voltage	No. required	Stock No.	Price s. d.	\& s. d.
$\begin{aligned} & 1 \text { uf } \\ & 20 \text { uf } \end{aligned}$	6 6		$\frac{1}{7}$	4		$32 / 300 / 70$ $40 / 40$	275 275		G4/6A	${ }_{3} 6$	
8 uf	6		11	4		40/40	300		G4/7	30	
32 uf	150		9	9		8/8	350		G4/9	30	
100/200/200/50	275		18	76		350	25		G4/10	26	
50/80	300		19	30		60/100	350		G5/4	50	
24	275		21	10		400	275		G5/5	36	
1632	350		25	26		60/100	275		G5/6	46	
32	275		26			100/400/32	275		G5/6A	76	
3,000	35		32			100/400	275		G5/7	76	
3,000	15		33			100/64	500		G5/7A	76	
2,500	9		36			$4 / 4$	250		G5/8	16	
750	12		38			100/65	250		G5/8A	40	
100	275		39	26		8/8	450		G5/9	40	
30	10		40	3		100/100/50	350		G5/10	76	
16	50 rev		42			100/380/16	275		G5/10A	76	
16/16	275		43			100/100	25		G5/11	26	
16	275		44	10		100/20/10	350		C5/1		
350	12		45	- 9		1,20 \}	50		G5/12	56	
20/4	275		46			1,000/1,500	25		G5/12A	60	
64	275		51			40/100	350		G5/13	36	
32/32	350		52	26		$4040 / 40$	350		G5/13 ${ }^{\text {A }}$	36	
$8 / 8 / 8$ 500	275		53	19		$8 / 8 / 8$	275		G5/14	3 2	
$\begin{aligned} & 500 \\ & 500 \end{aligned}$	6 4		54 60			12,500	15		G6/1	150	
500 $64 / 32 / 8$	275		60			800	${ }^{6}$		G6/2	16	
$64 / 32 / 8$ 30	275 6		62	26		1,600	80		G6/5	76	
50/50/50	350		67			1,000	60		G6/6	76	
40/40/20	275		70	20		100	275		G6/7	26	
400	6.4		71	3		200	150		G6/9	26	
320	10		72	3		8	200		G6/10	26 1	
32/32	275					200	25		G6/10A	20	
+25 +250	, 25			26		40	350		G6/11	26	
250	150		G4/3	26		400	300		G6/11A	2 3	
50/50	200		G4/4	26		250	25		G6/12	26	
16	300		G4/5			1,000	12		G6/12A	20	
60 $60 / 200$	350 275		$\mathrm{G4} / 5 \mathrm{~A}$ $\mathrm{G4} / 6$	$\begin{array}{ll}2 & 6 \\ 5\end{array}$		40	450		G6/13	40	

RESISTORS. Mainly 5 per cent. $7 / 6$ per 100 of any one value, 2/- per dozen or any one value.
(Most values in stock.
Mixed bags (our selection) 6/6 per 100
Mixed bags (our selection to 3 watt $7 / 6$ per 100 ,
MAINS DROPPER TYPE. Hundreds of values from .7 ohm upwards. 1 watt
to 50 watts. A large percentage of these are multi-tapped droppers for radio/television. Owing to the huge variety these can only be offered SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS 10/- per 100 of any one value. $3 /$ - per dozen of any one value. Smaller quanti

COMPARE THESE PRICES!!

MULLARD POLYESTER CONDENSERS

1,000 pf	3d. each	400 V
1,500 pf	3d. each	
1,800 pf	3d. each	
2,200 pf	3d. each	
. 15 uf	6d, each	160 V
. 22 uf	6d. each	160 V
. 27 uf	6d. each	160 V
1 uf	1/- each	125 V

25% discount lots of 100 per type.
TRANSISTOR BARGAIN! THEY CAN'T GET ANY CHEAPER!!! OC 44. First-grade Mullard. 4/- each.
OC 45. Mullard. Bozed. 4/- each
P.N.P. Audio. Untested, unmarked. MAINLY O.K. 10/- per 100.
N.P.N. Silicon. R.F. types, unmarked. ALL USUABLE. $10 /$ - per 50

Power Output (Similar OC 35). ALL TESTED. 4/- each; £2 doz
TX 300. Transistors similar to, tested in P.E. organ circuit and approved OCP 71 (similar to) Light-sensitive 2 - each
Light-sensitive Diodes. Can be used to control any transistorised device. $1 /$-each. 75/- per 100. £25 per 1,000 .
RECTIFIERS. Latest type. All marked. 800 volt peak, 1 amp mean current type 1 N4006. $2 / 6$ each, $24 /$ - dozen, $£ 7 / 10 /-100$. S.T.C. $3 / 4$ (400 volt)
$2 / 6$ each, 24/- dozen, £7/10/-100. BYZ 13 or 19 (6 amp) 2/6 each, 24/- dozen,
BY $1272 / 6 \mathrm{~d}$. each. 24/- dozen, $87 / 10 /-$ per 100 . $\& 50$ per 1,000 .
RECORDING TAPE GIVE-AWAY! ALI. BRITISH MADE, BEST QUALITY1
5^{*} Standard
5 St Standard

9/:

"Oddends" Minimum 150 2/3d
GIANT SELENIUM SOLAR CELLS. Last few to clear at half pricel RECORD PIAYER A MPI IEIERS. All transtor. Complete with
input lead volume control and speaker leads. This excellent unit also has built-i rectifier and smoothing components enabling same to be used direct on 6 to 9 volt A.C. supply. Small number only! Cannot be repeated at this price! $30 /-\mathrm{ea}$. TRANSISTOR RADIOS. Fantastic bargain! Tremendous value! Superb quality sound from large speaker! Excellent sensitivity! Complete with earpiece, batiery and plastic carrying case, all packed in a colourful presentation box. You would expect to pay \&5-but our price due to huge purchase is only 37/6d.1 CO-AXIAL CABLE. Semi-air spaced. 8d. yard. 60 yd. rolls 30 -Postage 4/Gd. PIECES WITH PLUG, $/$ Dech Manetic THIN CONNECTING WIRE RECORD PLAYER CARTRIDGES
ACOS GP67/2 15/- (Mono) GP94/1 30/- (Stereo, ceramic)
ACOS GP91/3 20/- (Compatible) ACOS GP93/1 with diamond needle 32/6d. ACOS GP93/1 25/- (Stereo) ACOS GP94/1 with diamond rieedle 37/6d. TRANSISTORISED FLUORESCENT LIGHTS. 12 VOLT
8 watt 12° tube, Reflector type 59/6 15 watt 18 tube, Batten type \quad 79/6 TRANSISTORISED SIGNAL INJECTOR KIT VERO-BOARD

Spot Face Cutter 7/6d. Pin Insert Tool 9/6d. Terminal Pins 3/6d. for 36 Spot Face Cutter and $521^{\circ} \times 1^{\circ}$ boards 9/9d.
VOLUME CONTROLS. $1 M$ ohm, $1 M$ ohm with D.P. switch. 5k (no switch all 2/- each
$500 \mathrm{klog}+50 \mathrm{k}$ lin + switch $\quad 3 /-\quad 10 \mathrm{k} \log +10 \mathrm{k} \log +$ switch $\quad 1 / 6$ 50 k S/log $+1 \mathrm{Mlog}+$ switch $\quad 3 /-\quad 1 \mathrm{Mlin}+1 \mathrm{Mlin}$ no switch \quad 2/6 $\begin{array}{lll}100 \mathrm{k} \operatorname{lin}+100 \mathrm{k} \log +3 \text { witch } & 3 /- & 500 \mathrm{k} \operatorname{lin}+1 \mathrm{M} \operatorname{lin} \text { no switch } \\ 100 \mathrm{k} \log +100 \mathrm{k} \log +\text { switch } & 3 /- & 1 \mathrm{M} \operatorname{lin}+2.5 \mathrm{M} \operatorname{lin} \text { no switch }\end{array}$ $\begin{array}{lll}100 k \log +100 k \log +\text { switch } & 3 /- & 1 \mathrm{Mlin}+2.5 \mathrm{M} \operatorname{lin} \text { no switch } \\ 250 \mathrm{k} \log +100 \mathrm{k} \operatorname{lin}+\text { swich } & 3 /- & 500 \mathrm{klin}+500 \mathrm{k} \log \text { no switch } \\ 2 / 6\end{array}$ $\begin{array}{lll}250 \mathrm{k} \log +500 \mathrm{k} \log +8 w i t c h & 3 /- & 100 \mathrm{k} \log +100 \mathrm{k} \log \text { no switch } 2 / 6 \\ 1 \mathrm{M}\end{array}$ $1 M \log +1500$ ohm lin + switch $3 / 0^{-}$
Skeleron presets/Wire wound presets. Mixed. Very good value. $7 / 6$ per dozen SCREENED LEADS. Specially designed to fill the demand for the most popular types-all leads consist of 9 ft . screened lead-except SL 11 whic has 10 ft . co-axial cable.

These prices cannot be repeated. Order now. Don't forget to add your name and address!
Please include suitable amount to cover post and packing. Minimum $2^{\prime \prime}$-.
G. F. MILWARD, DRAYTON BASSETT, near TAMWORTH, STAFFS. Phone: TAMWORTH 2321

도IーTMロIN

2 CHANNEL AUDIO RECORDER

* 10 watts continuous per channel
* Fully transistorised on 10 printed circuit boards
* 3 head system and 3 speeds $19-9.5-4.75 \mathrm{cms}$
* Mechanism operated by 4 DC solenoids
* Provision for full remote control

Robust construction and attention to detail make this an outstanding British tape recorder for industrial or domestic use
Portable 4 speaker version
Oiled Teak surround version
RELIABLE
SHORT CIRCUIT
 IN VALUE

Send for informative brochure fully explaining.

1. Why a single motor. 2. Electrical performance. 3. Wow and flutter.

MAGNETIC TAPES LTD.
CHILTON WORKS, GARDEN ROAD, RICHMOND, SURIREY Tel: 01 -876 7957
WW-104 FOR FURTHER DETAILS

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

- FULLY GUARANTEED REPAIR OF INSTRUMENTS
- CALIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone

FIRNOR-MISILON LIMITED 10 COMMERCIAL LANE, LETCHWORTH, HERTS Tel: 6069

Tune-in to successful trading

Here are all the facts and figures you need-in one compact volume. Saves time and money every working day. Completely revised and updated. $8 \frac{1}{2}^{\prime \prime} \times 5 \frac{1}{4}^{\prime \prime} 516 \mathrm{pp}$. Order your copy now.

Electrical and Electronic
 TRADER YEARBOOK 1970

40s. By post: 42s. 6d. from Electrical \& Electronic Trader. Dorset House. Stamford Street. London S.E. 1.

Khuar for Components

1 WATT AMPLIFIER MODULE TYPE PCM1
This amplifier unit is a printed circuit module incorporating the popular and well-tiled PA234 i.c. amplifiler. The unit is a complete AUDIO AMPLIFIER and requites no external components; you simply connect an 18 -volt power supply and a 15 - or
16 -ohm spaaker or headohone, even the supoly smoothing capacitor and the output copeaker or headphone, even the supply smoothing capaciior and the $2 \$ \times 3 \times 1 / \mathrm{c}$ This unit is available at only $36 / \mathrm{met}$ nomplete with descriptive lealiet or $70 /-$ net per pair. Send for free leafler.

electronic components in the west midlands

A wide range of components are available from stock for CALLERS, including the following
FESISTORS (including $5 \% \ddagger$ watt, High stabs at only 2 d . each in $100+$ quantities of MIXED values of your choice in the E12 series from 10 ohm to $10 \mathrm{M} / \mathrm{ohm}$). CAPACITORS (includes Polyesters, polystyiene, metallised film, minlature SEMICONOUCTORS (includes integrated circults, transistors, diodes, rectifiers) PLUS ALL the usual components such as plugs and sockets, pots, Veroboard, etc

WE ARE AN INTERNATIONAL RECTIFIER SEMICONOUCTOR CENTRE Mail order، $1 / 6 \mathrm{p}$. \& p . per order inland. Overseas at cost, min. 10/- Open 9.00 a.m 1012.50 pm 2.00 p.m. 105.00 Please note: we will be closed for annual holiday from June 1 to June 6 inclusive.

CIELEGTROWIOSLTD

STONE LANE KINVER STOURBRIDGE WORCS Telephone KINVER 2099

WW-107 FOR FURTHER DETAILS

EX COMPUTER PRINTED CIRCUIT Condels 2° a 4° packed with semicapacitors diodes, etc. Our price, 10 boards $10 /$. P. \& P.' I/6. With a guaranteed minimum of 35 transistors. Transistor Data included.
SPECIAL BARGAIN PACK. 25 boards for \&1. P. \& P. ${ }^{3 / 6}$. With a guaranteed Data included.
PANELS with 2 power transistors sim. to OC28 on each board plus components.
boards $(4 \times 0$ (28) Iol. P. \& P. $1 / 6$. 9 OAS, 3 OAIO, 3 Pot Cores, 26 Resistors,
14 C Apactiors, 3 GET872, 3 GET872B, 14 Capacleors, 3 GET872, ${ }^{3}$ GET872B, GET75. All long leaded on panels $13^{\circ} \times 4^{\circ}$.

EX COMPUTER "MEMORY"
CORE STORE PLANES
160 BITS \& \quad P. \& P. 2/4000 BITS \&4 P. \& P. 4/-

250
MIXED RESISTORS $\frac{1}{4}$ and $\frac{1}{\frac{1}{3} \text { Watt } \quad 12 / 6}$

DIODES EXEQPT. SILICON
4 Amp 150 PIV 4 for 10 /
20 Amp I50 PIV 4 for fl -
35 Amp 450 PIV 4 for 45 /-
P. \& P, I/-

EXTRACTOR/BLOWER

 FANS (Papst)100 c.f.m. $41^{\circ} \times 41^{\circ} \times$
$2^{\circ}, 2800$ r.p.m

RELAY OFFER

BUMPER BARGAIN PARCEL We guarantee that this parcel conctains at panels, including a minimum of 350 tran.
sistors (mainly NPN and PNP audio and switching types-datermanium, The rest of the parcel is made up with: Resistors 5% or better (including some \%omposition cyoes. Mainly carbon film, and diodes, miniature silicon types OA90, OA91, OA95, 15130, etc. . . . capacizors and polyesters. values.... also the odd transformer trim. pot, etc., etc. . . These are all minieture, up co date, professional, top quality comoffers yetl Price $65 / \mathrm{F}$. P. \& P. $6 / 6$, U K K New Zealand 20/- P, \& P. Limited seocks

EX-COMPUTER

POWER SUPPLIES Reconditioned, fully tested and guaranteed. with a ripple better shan 10 mv , and regulaion better than \%. Over voltage pro130 v a a c. $50 \mathrm{c} / \mathrm{s}$ input. Mains transiormer to suit 63 extra if required.

 arrlage $15 /$ - per unit.
\qquad High Stabs 14 and 150 \% and Better
LARGE CAPACITY ELECTROLYTICS RIPPLE CURRENT SA $\begin{aligned} & 1,500 \mathrm{mfd} 150 \mathrm{~V} \\ & 4,000 \mathrm{mfd} 72 \mathrm{~V} \\ & 1,000 \mathrm{mfd} 36 \mathrm{~V}\end{aligned} \quad 7 / 6$ each
€3.10.0 doz
EXTENSION TELEPHONES 19/6 ea. 35/- for 2 P. These phones
contain bells.
contain bells.

MAILING ADDRESS
S2 EARLS COURT ROAO, LONDON W.
KEYTRONICS
WAREHOUSE AND DISPATCH

WW-108 FOR FURTHER DETAILS

VITAVOX

FOR HIGH QUALITY

MICROPHONES

LOUDSPEAKERS

and ancillary equipment

Further information from:
VITAVOX LTD., Westmoreland Rd., London, N.W. 9
(Tel : 01-204 4234)

CONVERTOR/BATTERY CHARGER. Input 240v AC. 170 watt max. Wlth fuse and indicator lamps. Size $9 \mathrm{AC} \times 170 \times 4 \mathrm{win}$. Weight 191 b . An extremely compact unit that will give many years reliable service. Supplted with siug and lead. Only E4/IO/.. P. \& P. 15/. extra. As above-fully gerviceable-perfect intertor but soiled exterlor cases. 53 . P. \& P. 15/-
G. M. TUBES. Brand new. G24/G38/GB0 at 27/6 en.
MULLARD MX 115 GM TUBE with holder.
MULLARD MX $1 / 5$ GM TUBE With
Plat app 300 volts. $30 / \mathrm{ea} . \mathrm{P}$. \& $\mathrm{P} .3 / \mathrm{B}$.
PHOTOMULTIPLIERS. EMI 6007 X at $\mathrm{EB/IO/}$ ea. TRANSISTOR OSCILLATOR. Variable frequency

RACAL Diversity unit. 610 each. Carriage \&1.
AR88 Communication Recelvens from 620 .
CRAMER TIMER 28V DC Sweep $1 / 100$ th sec \& sweep 60 secs. 4^{*} dial. Remote control stop/start reset 56.10 .0 Omron/Schrack octal belased plug5A. by only. Brand new. Boxed $12 / 6$ relays. 2 pole c/o G.E.C. ${ }^{4}$ pole c/o $6 / 12 \nabla$ operatlon 180 ohms. Platinum

Miniature STC Plus in relars Plastlc dust cover. 4) mole c/o $7.5-18 \mathrm{~V}$. operation. 185 Ohms $8 /=$ each. TC Patero
CT.C. gealed 2 mole c/o 48 V . 2.500 ohm $3 / 6$ ea. $12 \mathrm{~V} 7 / \mathrm{ea}$.
CARPENTERS polarised slingle pole c/o 20 and 65 ohm CARPENTERS polarised Bingle pole c/o 20 and 65 ohm coil 14 new, complete with base $7 / 6$ eas. Bingle pol c/o 680 N.
Brand New. Single Pole c/o (type 5A2). 2×1200 ohms. 8/6 ea.

POTENTIOMETERS
COLVERN Brand new, 5; 10; 50: 100: 250: 500 Ohms; $1 ; 2.5 ; 5 ; 10 ; 25 ; 50 \mathrm{k}$ all at $2 / 6$ ea. Speclal Brand
new MORGANITE 250 K I In. Bealed. Nomal price 9/- our price $3 / 6$ ea.
INSTRUMENT 3^{*} Colvern. 5; 25: 100 ohms.
All at 7/- er.
TRIM POTS. Palgnton-solder luga 5,10 \& 25 K at $5 /$ each: Plins $10 ; 20 ; 50 ; 100 ; 200 ; 250 ; 500$ ohms:
$2.5 ; 25$ and 50 K at 10% each. DARSTAN-preset-sealed If din, itgh. 1; 2 and 5K I/6 HIGH RESOLUTION 25 K 80 turns. Complete with knob 6/6
ALMA precision resistors 100 K ; 400 K ; and $988 \mathrm{~K}-0.1 \%$ $5 / 6$ ea: $3.25 \mathrm{~K}-0.1 \% 4 / \mathrm{em}$.
DALE heat sink ressistors. non-inductlve 50 watt. Brand load.

Wheatatone Bridge by TINSLEY type 1138675.

CAPACITORS

ERIE feed through ceramlcons 1000 Df-Td. en. Sub-min. TRIMMER isquare. 8, 5pf, Brand new $2 / 6$ ea
Concentric TRIMMER $3 / 30 \mathrm{mf}$, Brand new $1 / 6$ ea Concentric TRIMMER $3 / 30 \mathrm{mf}$. Brand new $1 / 6 \mathrm{ea}$ ELECTROLYTICS. Brand new. $2500 \mathrm{mfd} 64 \mathrm{~V} 9 / 6$ ea
$4000 \mathrm{mfd} 40 \mathrm{~V} 9 / 6$ ea.; $250 \mathrm{mfd} 70 \mathrm{~V} 4 / 6 \mathrm{em} . ; 2000 \mathrm{mfd}$ 16 V T/- em. 5 KV . Brand new $£ 2$ each.
EHT 2 mfd
EHT 2 mfd 5 KV . Brand new $£ 2$ each.
VISCONOL EHT. Brand new 0.000525 kV , $16 /$ - ea E.H.T. $0.02 \mathrm{mfd} 8 \mathrm{KV} \cdot 6 /-\mathrm{er} . \mathrm{i} 0.1 \mathrm{mifd} 2.5 \mathrm{KV}$.nitrogelO.bmfl 2.5 EV 71 eas. $240 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ gnchronous. down to 60 rpm. Brand new $30 /-$ ea. P. \& P. $7 / 6.10$
DIODES 1 N 914 . Brand new $1 / 3$ ea.: $12 /=$ doz.; $4-100$; DIODES 1 E25-1,000.
PHOTOCELL equlvalent OCP $712 / 6$ ea.
BURGESS Micro Switches V3 5930 . Brand new $2 / 6$ ea.
BULGIN panel mounting Lamp holders. Renl. Brand new ${ }^{2 / 3}$ eain Brand new. $7 /$ e ea. \mathbf{P}. \& P. $2 / 6$ er. BRAND NEW BCII 4 TRAN
$4 / 3$ ea. per $100 ; 3 / 6$ ea. per 1,000 .
TRANSISTORS BC 114 -NPN Low noise hith gain audio, etc.: BC 116 -PNP General purpose $200 \mathrm{mc} / \mathrm{s}$
Ex brand new equipment. Guaranteed perfect. Good Ex brand new ea

NUCLEONIC INSTRUMENTS SCALER type 1009 by Dynatron. Suitable Beta/ able discrimlnator. Read out 2 decade neons and 4 dlxit counter. Supplied in as new condition at $f 5$ ea. Carr. 30/. As above but with resettable counter $\mathbf{C 8}$ ea Carr. S0/bult in EHT supply, Separate metering EHT and Count. EHT ratlable for erternal equigment 0 to
3 kv . As new $\mathbf{6 3 5}$. Carr. 80\%. 3 kv . As new C15. Carr. 30/\%.
Portable Geiger Counter in
Portable Geiger Counter in haversack. complete 100 CHANNEL PULSE HEIGHT analyger type 1383H. As new E75. As above but type 1363C. E120.
ECKO PULSE HEIGHT ANALYSER type N101 E25. CAIT. SO/\% Display und bype NIS 223. ©20. CINTEL Transistorised Nucleonic Acaler with adjustable dirariminator. 6 meter display 0.9 glving
count of 10 to the 5 . New Conditon. Now ONLY $£ 18$. Parr.

TEST GEAR

$\begin{array}{ll} & \text { OSCILLOSCOPES } \\ \text { E.M.I. } & \text { WM } 2 \mathrm{DC}-13 \mathrm{mc} / \mathrm{s} \text { E } 35\end{array}$

SOLARTRON 711S. 2 D.B. DC- 0 nc/8 660
SOLARTRON 449 DC- 15 me/s NOW only 165.
SOLARTRON 513/523 DC- $10 \mathrm{mc} / \mathrm{s} \mathbf{6 3 5}$
SOLARTRON 568 DC- $8 \mathrm{mc} / \mathrm{s}$ E18
COSSOR 1035 DH. 620
COSSOR 1049:1049 Mk. 3. DB. E22:10 and $\underset{630}{ }$

TF 958 (CT44) Audio Freq. Wattmeter $£ 15$. Carr. 10/
TF 886 Marnincatlon Meter 645 Carr. 11

TF 369 N. 5 Imperdance Brdige 655 Carr. $30 /-1$
 TF 195 M sine wave osculator $0 / 40 \mathrm{kc} / \mathrm{s} \mathrm{Cl} 2 \mathrm{Carr}$. \& TF 1843/2' X^{\prime} Band zen. 635 Carr. 30/-
TF $428 \mathrm{~B} / 1$ Valve voltneter EA Carr. $10 /$
Type 801 sis. Gen. 635 , Carr. 30
 SOLARTRON

1.aboratory amolliter AWS31A. 15c/s-350ke/s 635
gtabilised P.U. SRS 151 E 20 Carr. 30/-

 Procias Responge Analyger. Fine Condition 6250
Oscillator type 08 101. $£ 35$ ea. Carr. 30/.
Testmeter No. 1 El4 Carr. 15 /
Electronic Teatineter (F 38. Complete EI 18 Carr. £1 SPECIAL by G. \& E. BRADLEY, Multimeter ype CritiB. Batter Enverated. fuly transistorised, $(12 \mathrm{mv}-1200 \mathrm{~V}$ gcales. $+l-3 \% /+j-2 \%$ measures a.c./.c. voltage

 multiplier $24 \mathrm{~V}-400 \mathrm{~V}$ scales up to $50 \mathrm{MHz}: 40 \mathrm{mV}-4 \mathrm{~V}$ up to 1000 MHz . Brand new. Few only. 660 Carr.

Nide Ranse Capacitor Bridge

Valve Miluvoltmeter AIRPMEC $264.3 \mathrm{MV}-1 \mathrm{~V}$ €20 Carr. E 1
Counter tspe 865. 6 decades. Bright Vertical display ate faclilites. Very good condition $£ 25$. Carr. 80/ Klystron Power Bupply 698B $£ 25$ Carr. $£ 1$

OSCILLOSCOPE CAMERA. Shackinan 25ft. Exp 270 Focal itin. 刃ith standard 41 n . to 5 in. fitting. $£ 30$.
Chart Reconter. American Optical DC-90 cps Differential input 2.5 me ohns; Chart speed $1,5,20,100 \mathrm{~mm} / \mathrm{Sec} .1 \%$.
BAP 3750 . Sensitivity 50 milivolt per centimetre. BAP 3750 . Sensitivity 50 militvolt per centimetre300 volts nimx. Brand new condition $£ 100$.
E.H.T. Bume B9A in Polystyrene bolder with cover, Brand new. $2 / 6$ ea.
ZENITH E.H.T. Toster, with Probes. Metered $0-3.5 \mathrm{kv}$.
DVM \& ATIOMETER BIE 2116 hy Blackburn 75 c.
OENCO s hand low notse travelling Wave ampllfer L35. Carr. 3u/*.
SIGNAL Generator CT 53. Complete with leads. Good condition. $£ 10$ Carr. 15/-. With cony of charte.
FREQUENCY Meter LM 14. Moduiated version of C 281 with charts and covi. Brand new L30. Carr. 30\% SPECIAL, FURZEHILL V200 Valve millivolt meter. 10 mv to 1 Iv. 625 Carr. £1.
FURZEHILL Valve Volmeter type $978 \mathrm{~B} / 2$. Range 0.80 dbs \& 10 millivolts to 100 volts in 5 ranges. Size $11 \times 81 \times 7$ h. 612 . Carr. $15 /$
MIC-O-VAC type 22 (CT54) Volte: Current: Ohms. P. \& P. $10 /$.

VIBRATIMG REED ELECTROMETER type N 572 by ECKO. Range 10 to the 14 . Max sensitivity FSD for 1 of 0.03 Micro-microamps. $£ 20$ es. Carr. $£ 1$
3 CM Wiwe Guide, nome flex: Sanders Attenuators:
Decca Waveguide Switches: Delay lines, etc. Phone
or call.

Also large quantity spares avallable. Carriage at cost.
DISTRIBUTED AMPLIFIER type $2 C / 850 \mathrm{c} / \mathrm{s} 100 \mathrm{mc} / \mathrm{s}$ Gain 300 . 30 each.

DAWE Wide Range ofclliator type 400 A .20 cs to $20 \mathrm{kc} / \mathrm{s}$ Sine wave. 500,800 and 2000 ohn . Fine condition. 625 .
Carr. $80 /$.

PAIGNTON ATTENUATORS 0.1 db . to 100 db . In 3 decades. 600 ohm . 19^{*} rack mounting. $\mathbf{6} 20$ ea. Carr. 15/PISTON ATTENUATOR in carrying case. $\mathbf{3 0}-140$ mc / s calibrated $0 / 70$ db elo eas. Carr. \&l
Prectsion THERMOSTOR by YSI. 100 k at $25^{\circ} \mathrm{C}$. Range: $40^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$. Supplied with charts giving ohms ADVANCE Skral Generator type D1. 2 mols to 190 me/s. Sine and square mod. With original cbarta. Excellent condltion $\mathrm{f} 12 / 10 / 0 \mathrm{P}, \& \mathrm{P}$, \&1
SERVOMEX. Stabillzed D.C. Power unit. Type 38. Bench mounting. 0.15 volts. 0.2 .5 nmps. Separate voltase and current meters $£ 25$.
PYE BASE 8tation 250W complete with modulator \& speech ambw etc. \& 6.12 V receivers. Present freq. coverage $90 / 100 \mathrm{mc} / \mathrm{s}$. The lot E 120
HOLGATE 6 channel Event recorder, 1 ln . or 10 in . inches per mecond. Size if $\times 5 \times 8$ in. Excellent condition.

HEWLETT PACKARO Recorder and Decoder type 20t10. As new. Write or phone for further detalls.
191 n . Rack Mounting CABINETS 6ft. hish 2 ft . deep, Side and rear doons. Fully tapped, complete with baso
and wheels. $12 / 10 / 0$ Carriage at cost. Double Bay complete with doors. Fine condition. $\mathbf{\ell 2 5}$. Carriage at cust.
MULLARD Transtetorlsed Analogue to Digital ConSUNVIC DC chopper Amplifier type DCA 1. Superb onndition. 22/10/0 ea. Carr. 20)
CINTEL Universal Counter 630 . Carr. $30 /$
PROCESS TIMERS 8 Individual tinner circuita
each with 0.100 gec calibrated dials. Ideal displays,
ISOLATING TRANSFORMERS 240V in 240 V 7 .
DESK Telephones. Current type. Standarid dial. 3 wire red. green. white. Ideal extenslons etc. As new 63 each.
DIECAST ALLOY boxes. Size $4 \times 21 \times 11 \mathrm{in}$. Drilled ends for Belling Coax socket. 3 compartments link holes
CONVERTOR $50 \mathrm{c} / \mathrm{s}$ single ph. to $400 \mathrm{c} / \mathrm{s} 3 \mathrm{ph} .250 \mathrm{w}$.
in 6ft. encloned AMPEX FR400 with Benson-Layner 'XY' Plotter.

4 DIGIT RESETTABLE COUNTERS. 1000 ohm . coll. Size it $\times\{\times 4\} \mathrm{ln}$. As new, by Sorleco of Geneva. 62/10/0 each.
As above but 350 ohm. $\mathbf{6} 3 / 10 / 0$ er.

TRANSFORMERS. All standard tnputs

STEP DOWN ISOLATING trans. Standard 240 V ds above but 500 w . $£ 4$ ea.
75 WATT Constant voltase transformer. 195 to 255
volts- 240 v out. $30 /-$ each. P. 8. P. $5 /-$. MODULATION trans. PP-0 BW6. 30/- each. P. \& P. 5\%.

Transformer 0-215-250 120 MA; 6.3 V tA CT $\times 2: 2 \times 6.3 \mathrm{v}$ Matching contact cooled bridge rectifer $7 / 6$ each $350-0-35075 \mathrm{~mA}, 5 \vee 2 \mathrm{amps} \times 2,21 /-$ ea.
Gardners $6.3 \mathrm{~V} 2 \mathrm{~A} ; 6.9 \mathrm{P} 1.5 \mathrm{~A} ; 0.3 \mathrm{v} 0.1 \mathrm{~A}$. Size $3 \times 11 \times 41 \mathrm{ln}$
Parmeko/Gnrdners. Potted. $475 \cdot 60-0.60-475$ at 160 mA : separate windiug 216.0215 at 45 mA ; 6.3 v 5A: 6.3 v
Gardnera/Gresham. Potted $450-400 \cdot 0-400-450180 \mathrm{ma}$: $0-4-6.89 \mathrm{~A} \times 2 ; 0-4-6.34 \mathrm{~A}: 0-4 \cdot 5 \mathrm{~V}$ 3A. In original boxes Gardners 2 KV 10MA and 4 volte $\times 2$. $44 / 10 /-$ ea jncl. Dostake
Parmeko 05v 1 and. Separato $0-18-24 v$ at 0.6 ammp. 30/-ea. Gard/Parm/Part. $450-400-0-400-450,180$ MA. 2×8.3 v. 63 ea.
ADVANCE Constant Voltage Trans. 3KW $\mathbf{6 5 0}$. Also
1.5 KW availablef 30 . ADVANCE Constant Voltage Trans. B volts 50 watt. Gardners $\$ \mathrm{v}$ soamp. Brand new $\mathrm{f} 1 / 10$ each inci. poatage. CHOKES, 5H; 10H: 15 H; up to 120 mA . $8 / 6$ ea. Up to 250 mA i2/6 ea.
Large qusntity IT, HT, EHT transformers. Your requirementa. please.
Panel switchea DPDT ox eq. $2 / 6$ ear: DPST Brand new brand new $6 /-$ ea.
SPECIAL. 813 valves. Brand new. bozed 62/10/0. PRECISION continually rotarable stud switches.
Single pole. 80 way, can be stacked if required. $£ 3$ ea. PRECISION rotary stud switchea 2 pole 12 W slze 2° sq., t shaft. E2/10/0 ea.
Min. SEALED 4 pole 9 way and 9 pole 4 way rotary
 Solartron Storage, Oscllloacope type QD 910. MUST GO.
Now only flo0 each.

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd unlts, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

ELEOTRONLUE

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS

BARGAINS IN NEW TRANSISTORS

ALL POWER TYPES SUPPLIED WITH FREE INSULATING SETS

2N696	5/6	2N3707	4/-	AF127	7/-
2N697	5/6	2N3708	3/-	BAl02	9/-
2N706	2/9	2N3709	3/-	BC107	2/9
2N1132	9/9	2N3710	$3 / 6$	BCl08	2/6
2NI302	4/-	2N3711	3/11	BCl09	2/9
2 NI 303	4/-	2N3904	7/6	BC147	3/6
2N1304	4/6	2N3906	7/6	BCl48	3/3
2NI305	4/6	2N3731	24/-	BCl49	3/6
2N1306	$6 / 9$	2N4058	5/3	BC153	101-
2N1307	6/9	2N3325	10/9	BCIS4	11/-
2NI308	8/9	2N3794	1/3	BC157	3/9
2N1309	$8 / 9$	2N4284	3/3	BCIS8	3/6
2N1613	6/-	2N4286	3/3	BC159	$3 / 9$
2N1711	7/-	2N4289	3/3	BC167	2/6
2N2218	$9 / 3$	2N4291	3/3	BC168	2/3
2N2147	18/9	2N4292	3/3	BC169	2/6
2N2369A	5/3	2N4410	4/9	BCI7	6/3
2N2646	10/9	2N5192	25/-	BC178	5/8
2N2924	4/-	2N5195	28/3	BCI79	$61-$
2N2925	4/6	40361	12/6	BDI21	181-
2N2926R	2/3	40362	16/-	BDI23	24/3
2N29260	2/3	ACl26	6/6	BFI78	$10 / 6$
2N2926Y	2/3	ACl^{27}	6/-	BFX29	10/9
2N2926G	2/3	ACl28	6/-	BFX85	8/3
2 N 3053	$5 / 6$	ACl76	11/-	BFX88	6/9
2N3054	14/3	ACY22	3/9	BFYS0	4/6
2N3055	16/-	ACY40	4/-	BFYSI	4/3
2N3391A	6/3	ADI 40	19/-	B5 $\times 20$	3/9
2N3702	3/6	ADI49	17/6	MJ480	21/-
2N3703	3/3	AD161		MJ481	27/-
2N3704	3/9	AD162	pr.	MJ491	30/-
2N3705	3/5	AFII8	16/6	NKT403	15/6
2N3706	3/3	AFI24	7/6	NKT405	15/-

RESISTORS

Cod	Power	Tolerance	Range	Volues available	1 to 9	$\begin{aligned} & 10 \text { to } 99 \\ & \text { note bel } \end{aligned}$	$0 \text { ub }$
c	1/20W		$82 \mathrm{R}-220 \mathrm{~K}$	EI2	18	16	15
c	$1 /$		4.7	E24	2.5	2	1.75
	1/4W	10	$4.7 \Omega-10 \mathrm{M}$	E12	$2 \cdot 5$	2	1.75
	1/2W		$4.7 \Omega-10 \mathrm{M}$	E24	3	2.	-25
	1/2W		$10 \Omega-1 \mathrm{M} \Omega$	E2	-	8	
	IW		4.7Ω-10M	EI	6	5	
W	IW	$\pm 1 / 20$	-22 2 -3.3 Ω	E12		all qua	
	3W		$12 \Omega-10 \mathrm{~K}$	E12		5d. all quansiti	
	7W			E12			
Codes: $\mathrm{C}=$ carbon film, high stabllity, low noise. MO = metal oxide, Electrosil TR5, ultra low noise. $W W=$ wire wound, Plessey.							
Volues: E12 denotes serles: $1,1 \cdot 2,1 \cdot 5,1 \cdot 8,2 \cdot 2,2 \cdot 7,3 \cdot 3$, $3 \cdot 9,4 \cdot 7,5 \cdot 6,6 \cdot 8,8 \cdot 2$ and their decades. E24 denotes series: as E12 plus $1 \cdot 1,1 \cdot 3,1 \cdot 6,2$, $2 \cdot 4,3,3.6,4.3,5 \cdot 1,6 \cdot 2,7.5,9.1$ and their decades.							
NEW PLESSEY INTEGRATED CIRCUIT POWER AMPLIFIER TYPE SL403A, Only 48/6 nett. Oparates with I8V power supply. Sensitivity 20 mV into $20 \mathrm{M} \Omega, 3$ watts inco $7 \cdot 5 \Omega$.							
Supplied complete with application Data on orders for 2 or more.				LARGE CAPACITORS. ALL NEW STOCK High ripple current types: $2000 \mu \mathrm{~F}$ 25V 7/4; $2000 \mu \mathrm{~F} 50 \mathrm{~V} 11 / 4 ; 5000 \mu \mathrm{~F} 25 \mathrm{~V}$ 12/6; $5000 \mu \mathrm{~F}$ $50 \mathrm{~V} 21 / 11 ; 1000 \mu \mathrm{~F} 100 \mathrm{~V}$ 16/3; 2000 $\mu \mathrm{F} 100 \mathrm{~V} 28 / \mathrm{P}$; $5000 \mu \mathrm{~F} 70 \mathrm{~V} 36 /-$; $5000 \mu \mathrm{~F} 100 \mathrm{~V} 58 / 3$; $1000 \mu \mathrm{~F}$ $50 \mathrm{~V} 8 / 2 ; 2500 \mu \mathrm{~F} 64 \mathrm{~V}$ 15/5; $2500 \mu \mathrm{~F} 70 \mathrm{~V} 19 / 6$.			
	V. 69 alwork	STEREO A $\therefore \quad<11 / 18 /-$	LIFIER KIT T complete				
CARBON SKELETON PRE-SETS Small high quality, type PR: Linear only: 100Ω. $220 \Omega, 470 \Omega, 1 K \Omega, 2 K 2,4 K 7,10 K, 22 K, 47 K$, 100K, 220K, $470 \mathrm{~K}, 1 \mathrm{M} \Omega$. $2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$ vertical or horizontal mountins 1/- each							
				$\begin{aligned} & \text { MEDIUM RANGE ELECTROLYTICS } \\ & \text { Axial Ioads, Values (} \mu \text { F/V): } 50 / 50 ~ 2 /-; 100 / 25 \\ & 2 /-; 100 / 502 / 6 ; 250 / 252 / 6 ; 250 / 503 / 9 ; 500 / 25 \\ & 3 / 9 ; 1000 / 103 / 3 ; 50050 \quad 4 / 6 ; 1000 / 254 /-1000 / 50 \\ & 6 /-; 2000 / 256 /-330 / 252 / 6 \text {. } \end{aligned}$			
S-DoC\& PUT AN END TO "BIRDSNESTING". Components Just plug in. Saves valuable time. Use components again and again. S-DeC Only 30/6 post free							
				SMALL ELECTROLYTICS Axial leads: $5 / 10,10 / 10,25 / 10,50 / 10 \quad 1 /-$ each $25 / 25,47 / 25,100 / 10,220 / 10$			
				COMPONENT DISCOUNTS 10% on orders for components for $\mathbf{5} 5$ or more. 15% on orders for components for ClS or more. (No discount on nett items)			
Compact T-DeC, increased capacity, may be temperature-cycled. T-DeC only 50/- pose free							
WAVECHANGE SWITCHES IP 12W; 2P 6W; 3P 4W; 4P 3W-long spindles SLIDER SWITC̈CES \therefore 4/9 each Double pole, double throw 3/- each				POSTAGE AND PACKING Free on orders over \mathbb{E}. Please add $1 / 6$ if order is under $£ 2$. Overseas orders welcome: carriage charged at cost.			

PEAK SOUND ENGLEFIELD KITS

Brilliant new styling and available in two forms: STEREO 15 WATTS PER CHANNEL Supplied in kit form with complete amplifier and pre-amplifier modules and power supply components. Output per channel into 15Ω -13 watts R.M.S.

Price 138.9.0 Nett

STEREO 25 WATTS PER CHANNEL

Supplied in kit form with complete amplifier, pre-amplifier and regulated power supply modules. Output per channel into 15Ω -28 watts R.M.S.

Price $\mathbf{6 8 8}$.15.0 Nett Specifications on these amplifiers in accordance with the Specifications in Guarantee published in Peak Sound advertisements.
Inputs:
Magnetic, RIAA 3.5 mV Tape 100 mV Ceramic 35 mV Radio 100 mV Signal to noise ratios: Better than 60 dB all inputs. ENGLEFIELD CABINET to house either above assemblies (as illustrated) 66.0.0. Nett Other Peak Sound Products as advertised.

ZENER DIODES: Full range of $5 \% 400 \mathrm{mV}$ available in E24

 COLVERN 3 WATT WIRE-WOUND POTENTIO METERS: $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega$ K $\Omega, 1 \cdot 5 K \Omega, 2.5 K \Omega, 5 K \Omega, 10 K \Omega, 15 K \Omega, 25 K \Omega, 50 K \Omega$CARBON TRACK POTENTIOMETERS
Double wiper ensures minimum noise level. Long plastic spindles. Single gang linear .. $220 \Omega, 470 \Omega, 1 \mathrm{~K}$, etc. to $2 \mathrm{M} 2 \Omega \mathrm{2} / 6$ Single gang log. .. $4 K 7,10 K, 22 K$, etc. so $2 M 2 \Omega \ldots 2 / 6$ Dual gang linear .. 4K7, 10K, 22K, etc. to $2 \mathrm{M} 2 \Omega$.. $8 / 6$ Dual gang log. .. 4K7, 10K, 22K, etc, to $2 \mathrm{M} 2 \Omega$ Log/Anti-log. .. $10 \mathrm{~K}, 47 \mathrm{~K}, \mathrm{IM} \Omega$ only Dual anti-log .. IOK only
\qquad Any type with $\frac{1}{2}$ amp double pole mains switch .. extra $2 / 3$ Please Note-only decades of 10,22 and 47 are avallable with rante quoted.
FETS n-channel
Low cost general purpose 2 N5163, 25 volt .. only 5/- each Audio/r.f. Texas 2 N3819

8/6 each Motorola 2N5457 (MPFI03)
$9 / 9$ each
Motorola 2N5459 (MPF105) 9/9 each
30 WATT BAILEY AMPLIFIER COMPONENTS:
Transistors for one channel E7/5/6 lise, with
10% discount" $1411-$ list
only $46 / 11 /-$ Capacitors and resistors for one channel, Nov. '68 circuit list $\mathbb{E 2}$ Printed circuit board free with each transistor set
Complete unregulated power supply kit $44 / 17 / 6$ mono or stereo, subject to discount
Complete regulated power supply kit Nov. '68 circuit 69/5/ubject to discount. MAIN LINE AMPLIFIER KITS AS ADVERTISED
PRICES NET AUTHORISED DEALER SINCLAIR IC.IO INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMPLIFIER
This remarkable monolithic integrated circuit amplifier and pre-amplifier is now available for despatch from stock. It is the equivalent of 13 transistor/l8 resistor circuit plus 3 diodes and the first of its kind ever. It is d.c. coupled and applicable to manual provided with it.
manual provided with it
59/6 NETT
post free

VALVES

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12 01.7434946

ordered from us is com. pletely overhauled mechan

MARCONI TEST EQUIPMENT

IMPEDANCE BRIDGE TYPE TF 369 (No. 5). Measures L \& C as 80 Hz , $1 \mathrm{kHz}, 10 \mathrm{kHz}$. Ranges:-L: $1 \mu \mathrm{H}-100 \mathrm{H}$. C: $1 \mathrm{mF}-100 \mu \mathrm{~F}$. R: $0.10 \mathrm{hms}-100 \mathrm{mohms}$. AC Bridge volts monitored and vari ble. Automatic detector sensitivit conerol. $\mathbf{E l} 105$. Carriage $30 /$-.
 29/41FT. AERIALS each conslsting of
ten 3ft. Sin. dia. tubular screw-in
sections. IIft. (6-section) whip aerial
with adaptor to fit the 7in. rod, insu-
lated base, stay plate and stay assemblies.
pegs, reamer, hammer, etc. Absolutely
brand new and complete ready to erect,
in canvas bag, $\mathbf{C 3 / 9 / 6 . ~ P . ~ \& ~ P . ~} 10 / 6$.

AVO SIGNAL GENERATOR CT AVO'S METERS
Model 8 with leads, Ela . Model 7X with leads E15.10.0 Model 7 with leads, $\mathbf{£ 1 4}$.10.0. Model 47A complete with multiplier case, $£ 12$. Case, El2.
Model 48 A equipped as 47 A,
Carriage for each of above $7 / 6$. PANEL METERS. see our last for list and prices.
PHASE MONITORME-63/U. Manufactured recently by Control Electronics
Inc. Measures directly and displays on a panel meter the phase angle between ewo applied audio frequency signals within the range from $2 \mathrm{~m}-20,000 \mathrm{c}$. p.s. to an accuracy of $t 1.0^{\circ}$. Inpue signals
can be sinusoidal or non-sinusoidal between 2 and 30 v. peah. In excellent
condition. © 75 . Carriage $30 / \mathrm{m}$.

SOLARTRON EQUIPMENT

LAB. AMP AWS $151 A$, Frequency:
15 Hz to 350 kHz . Metered outpuc, 'scope viewing, ect. E29.10.0. Carri-
age 20/-.
Regulated and stabilised P.S.U. SRS $151 \mathrm{~A}, 20$ co 500 V positive at 300 mA in wo ranges. Var fixed 170 V negative output, $\mathbf{C 3 5}$. Carriage 20/-. 7 MHz 'scope, $£ 85$. Carriage $30 /$-, CD 643.2 Single beam Laboratory Model, DC to 14 MHz price upon application.
QD 910 . Storage Oscilloscope, as new. Price on request.
FIELD TELEPHONE TYPE "F". Housed in portable wooden cases. Excellent for communication in and outdoors ior up to 10 miles. Pair including 220 yds field cable in drum $\mathrm{E7} .10 .0$.
4,5 and 8 bank 25 way uniselectors, $24 \mathrm{~V}, \mathrm{guaranteed}$ perfect, $£ 3.15 .6$; ©4.10.0; $\mathbf{6 6 . 1 7 . 6 \text { respectively } . ~}$
DAWE STORAGE OSCILLO. SCOPE complete weih trace shifer, complete as new, specification and price on request.
FURZEHILL VALVE VOLTMETER TYPE 378B/2. YOmV to IOOV. To clear HARNESS "A" \& "B" control units, juncrion box
phones, etc
BOONTON Q METER TYPE ISOA tor 30 to 500 pF . Vernier capacitor $\pm 3 \mathrm{pF}$ Gas range. 0.250 with $2.5 \times$ multiplier. Cas plus carriage.

BOONTON SIGNAL GENERATOR TS $497 / B /$ URR, $2-400 \mathrm{MHz}$. 895. TS $418 \mathrm{~B} / \mathrm{U}$ SIGNAL GENERATOR, $400-1000 \mathrm{MHz}$. f 105 . Carr. $30 /-$

TELEPHONE ENQUIRIES

SPECIAL OFFER TRANSISTORS, ZENER DIODES
\qquad To view TEST EQUIPMENT please phone for appolnement

AMERICANLONG-RANGEAND SHORT.RANGE ELECTRO.

 THEODOLITE for tracking and course correction of missiles androckers made by General Motors and
Perkin Elmer Corp. The short range Perkin Elmer Coro. The short range pre-amplifier assy.. a visual optical system, a mounting optical system, plumb system and a supporting base The monitoring optical system pro jects a beam of light at the mirror
monitors the deflected light and converts it into electrical signals to
indicate any azimuth error. indicate any azimuth error The long range electrotheodolite, con meter, electronic assembly, fluor-
escent tube assy., porroprism, esc escent tube assy., porroprism, etc. excellent condition and are offered at
a fraction of the original cost. Price on apolication

TFI4HM SIGNAL GEN. Freq. range $10 \mathrm{KHz}-72$ MHz, R.F. output 2uV to 2 V at
50 ohms 400 and 1000 Hz interal mod. Limited qty. only avallable. Full spec. and price on request.
TFIOAIC VTVM A.C. voltage range 300 MV to 300 V in 7 ranges. $20 \mathrm{~Hz}-1500 \mathrm{MHz}$.
D.C. voltage ranges $300 \mathrm{MV}-1000 \mathrm{~V}$ in 8 D.C. voltage ranges $300 \mathrm{MV}-1000 \mathrm{~V}$ in 8
ranges, D.C. reistance 50 ohms to 500 ranges,
Mohms. Price C 52.10 .0 .
BRADLEYPORTABLEELECTRONIC Mntrument operates from cTA7IB. This is fully transistorised and measures A.C. and D.C. current, A.C. and D.C. Voltage and calibration check. Full spec. and price on request.
AR88 SPARES. We hold the largest stock WEE MEGGERS. 250v 412.0.0. 500V GENERAL RADIO AMPLITUDE MODULATION MONITOR TYPE 1931A. 445 plus carriage. A.F. SWEEP FREQUENCY OSCILLATOR. Range 12.5 to $25,000 \mathrm{~Hz}$, sweep
rate $0-7$ octaves $/ \mathrm{min}$. Variable ourput, automatic or manual frequency control. 555 plus carriage.

FOR EXPORT ONLY

MULLARD N.W.S./T TRANS. MITTER RECEIVER. Self contained 4 fc . $\times 2$ fft. $x 2 \mathrm{ft}$. The transmiter is
crystal controlled with eight switched uned over the range 1.5 so 13 MHz The transmiterer delivers up to 2 A into the a
handsec.
COLLINS TYPE 231D 4KW une and manual cuning. Complece with very comprehensive spares. Full Complete installations and all HPares. No. HeTS WRELESS SETS. RECEIVERS with all necessary accessories.
PYE PTC 2002N A.M. Ranger Mobile Radio Telephone, brand new and complete, 445

INTEGRATED CIRCUITS

CA 3005 wide band R.F. Ampl
CA 3012 mW dide band ampl. isomw

STC 93018 DIgital dual 4 imputzates 86
 Pleasey A.F. Ampu with PAE-AMP.
 tone controls
controls. E12.|o.6.

SERVICE TRADING CO

INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE 0/260 v. A.C. BRAND NEW. Keenest prices in the country. All types (and spares) from
to 50 amp. available from seock.
$0-260 \mathrm{v}$. at 1 amp ..
$0-260 \mathrm{v}$. at 5 amps
$0-260 \mathrm{v}$ v. at 8 amps.
$0-260$ v. at 10 amps.
$0-260$ v. at 12 amps
$0-260$ v. at 20 amps. $0-260$ v. at 37.5 amps. $0-260 \mathrm{v}$. at 50 amps . 66
69
614
618
621
625
637
672
692 mmediate deliver
OPEN TYPE (Panel mounting). 1 amp. 43.10

RING TRANSFORMER

 unctional Versatile Educational This multi-purpose Auto Transformer, with Hound current Transiormer, Auso TransformerH.T. or L.T. Transformer, by simply hand wind the required number of zurns through the . ivesing the 100 V.A. Model the output could be wound Price: RT. 100 VA 3.18 turni per volt, 6 ori2V. 509 Mmp . et
 -
L.T. TRANSFORMERS

All primaries $220-240$ vol ype No. 12 Sec. Taps
 12 v, at $5 \mathrm{~A}, \ldots \ldots \ldots$. 30 .
 30, $40,50 \mathrm{v}$. at 5 amps.
 $10,17,18 \mathrm{v}$. at 10 amps
 17, 18,20 v at 20 .
 $6,12,20 \mathrm{v}$. at 20 amps .
 4, 6, 24, 32 v at 12 amps
 UTO TRANSFORMERS. Step up, step down $10-200-220-240 \mathrm{v}$. Fully shrouded. Now. 300 watt P. \& P. 6/6. 1.000 wate type $£ 7 / 2 / 6$ each, P. \& P. $7 / 6$. SANGAMO WESTON SYNCHRONOUS GEARED MOTOR
 New Three Types. I R.P.M. I Rev per
 P. ${ }^{\&} \mathrm{P} \cdot \mathrm{P} \cdot 2 / 6$. $\bar{T} \overline{\text { P }}$
 PLUGS AND SOCKETS 10 way plug and chassis mounted.) chassis mounted.) Plug chassis mounted and socket (Illustrated.)
 BURGESS MICRO SWITCH Lever operated c/o contacts. Price 4/- plus 9d. P. \& P. IOin

INSULATED TERMINALS Available in black, red, white, yellow, blue and green. New

LIGHT SENSITIVE SWITCHES Kit of parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and
Circuit. Now supolied wish new Siemens High Speed Relay for 6 or 12 volt oper ations. Price $25 /$, plus $2 / 6$ P. \& P ORP. 12 and Circuit $12 / 6$ post paid.
220/240 A.C. MAINS MODEL

incorporates mains eransformer rectifier and special circuit $47 / 6$, plus $2 / 6 \mathrm{P} . \mathrm{P}$ P. LGHT SOURCE
MOUNTING MOUNTING
Precision engineered light source
with adjustable lens assembly and with adjustable lens assembly and $0 \Rightarrow$ ventilated lamp housing to tak

02 ORP. 12 or similar cell with optic window. Both units are single hole fixing. Price per pair $\mathbb{C 2 / 1 5 / 0}$ plus $3 / 6$

MOTORISED SWITCHING UNIT (Ex-W.D.)

 Powerful, precision-made, ex-W.D. 12 v. D.C., reversible motor, drives multiple gear train with outputs approx. 4 r.p.m. and
P. \& P. $4 / 6$.

VEEDER ROOT COUNTER

 230 v. A.C. 50 eycle 5 figure counter 230 v . A.C. 50 eycle 5 figure counter(non resetable). $18 / 6$, P. \& P

EX. W.D. MINIATURE BLOWER UNIT
$18-24 \mathrm{v}$. D.C. operation, overall length
$3 \frac{1}{2}$ in. Blower 27×24 in., $20 /=$ 31 in. Blower 2%
P. $\&$ P. $2 / 6$
SOLIDSTATEINTERVAL TIMER 24-30v. D.C. operation. Stabilised Uni-junceion Timer and S.C.R.
(30V. IAmp.), encapsulated in metal
 from a fraction of a second to several minutes by means of external Relay many orher complex timing Functions are possible. Price: $16 / 6 \mathrm{incl}$. eircuit, p. \& P. 2/6. Suitable relay 9/6. P. \& P. 1/6.
A.C. CONTACTOR

2 make

 contacts. $230 / 240$ Y. A.C. OBrand new. $22 / 6$ plus $/ /-\mathrm{P}$ \& P.

$\left\{\begin{array}{l}\text { (2) } \\ y^{2}\end{array}\right.$

rower

 RHEOSTATS(NEW) Enamel. heavy ducy embedded in Vitreous號 STOCK IN THE FOLLOWING II VALUES 100 WATT I ohm 10a., 5 ohm 4.7a.. 10 ohm 3a.,
 30 mA . 2.5 k ohm $-2 \mathrm{2a}$., 5 k ohm 140 mA ., Diameter 3 in. Shaft length in. dia: h/in., 27/6. P. \& P. $1 / 6$.
$50 \mathrm{WATT} 1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / \mathrm{K} / \mathrm{I} \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K} /$ SK Ohm. All at 21/0, P. \& P. $1 / 6$. 25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}$ ohm. All at 14/6, P. \& P. I/6.
Black Silver Skirted knob calibrated in Nos. 1-9. $1 \frac{1}{1}$

TRIGGERING CIRCUITS. PROVISION FOR EX. The Strobe is one of the most useful and Interesting instruments in the laboratory or workshop. Invaluable for the study of movement and checking of speeds. Many uses can be found in the psychiatric and photographic fields, also in the entertainment and is a real sool as well as an interesting scientific device EXPERIMENTERS "ECONOMY" KIT Adjustable I to 36 Fiash per sec. All electronic comfonents Including Veroboard S.C.R. Unijunction NEW INDUSTRIAL KIT Ideally suitable for schools, laboratories etc. Roller tin prirted circuit. New trigger coil, plastic thyristor HY-LYGHT STROBE This strobe has been designed for use in large rooms, halls and the photographic field, and utilizes a sitica tube for longer life expectancy, printed circuit for casy assembly, also a special trigzer coil and output approx. A ioules. Price $\{10.17 .6$. 7-INCH POLISMED REFLECTOR. Ideally suited for above Strobe Kits. Price $10 / 6$ and $2 / 6$ P. \& P. or

 BODINE TYPE N.C. 1

GEARED MOTOR

(Type 1) 71 r.p.m. torque 10 lb . in Reversible $1 / 70$ th h.p. 50 cycle .38 amp . (Type 2) 28 r.p.m. torque 20 lb . In
 reversible $1 / 80$ th h.p. 50 cycle .28 amp. The above two precision made U.S.A. motors are offered in as new condition. Input voltage of motor
$115 v$ A.C. Supplied complete with transformer for $230 / 240 \mathrm{v}$ A.C. input Price, either type $\$ 3.3 .0$ plus $6 / 6$ P. \& P. or less transformer C2.2.6 plus 4/6. P. \& P.
These motors are ideal for rotating aerials, drawing curtains, display stands, vending machines etc. etc. INSULATION TESTERS (NEW) Test to I.E.E. Spec. Rugged metal conseruction, suitable for bench or field
work, constane speed clutch. Size work, constant speed ciutch. Size
L .8 in.. W.4,in. H.6in., weight 6lb., 500 VOLT'S, 500 megohms 628

MINIATURE UNISELECTOR 3 banks of II positions, plus homing bank. 40 ohm coil. removed from equipment and emoved from equipment and

UNISELECTOR SWITCHES NEW

4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 V. D.C. op
E5.I7.6, plus $2 / 6$ P. \& P.
6 BANK 25 WAY FULL
WIPER 25 ohm coll, 24 v . D.C
operation. E6. 10.0 , plus $2 / 6$ P. \& P.

RELAYS

NEW SIEMENS PLESSEY, etc. MINIATURE RELAYS AT A
HIGHLY COMPETITIVE PRICE.

COIL	WORKING	
a	D.C. VOLT	CONTACTS
170	9-12	4 co H.D.
170	$9-12$	$3 \mathrm{c} / \mathrm{o}+1 \mathrm{H} . \mathrm{D} .90$
230	$6-12$	2 clo
280	6-12	$2 \mathrm{c} / \mathrm{o}$ incl. base
700	12-24	$2 \mathrm{c} / 0 \mathrm{incl}$ base
700	16-24	$4 \mathrm{clo} \mathrm{incl}$.
700	16-24	4 M 2 B incl. base
9000	$\begin{aligned} & 40-70 \\ & \text { H.D. }=H \end{aligned}$	$2 \mathrm{c} / \mathrm{o}$ incl. base vy Duty

c/o incl. base
co incl. base
c/o incl. base
4 clo incl. base
4 M 2 B incl. base

PRICE

MINIATURE RELAYS
9-12 volt D.C. operation. 2 e/o 500 M.A. contacts Size only lin. $x \neq x \frac{1}{2}$. Price $11 / 6$ Post paid.
$30-36$ V. D.C. operation. $2 \mathrm{c} / \mathrm{o} 500 \mathrm{M} . \mathrm{A}$. contacts.
3.200 ohm coil. Size only $1 \times \frac{1}{1} \times+\frac{1}{}$ in. $8 / 6$ post paid.

SPECIAL OFFER
Relay $12 / 24$ V. D.C. $2 \mathrm{c} / 0^{3}$ Amp contacts.
400 ohm coil. NEW. $9 / 6$ P. $\&$ P. $1 / 6$ or
4 for $30 /=$ pose paid.

230 VOLT AC RELAY LONDEX four c/o 3
amp contacts. 18/6, Incl. base. Post Paid.

SANWA Multr bance NEW MODEL TESTERS
 TESTER, 20,000 O.P.V. MIRROR SCALED WITH OVERLOAD PRO.

 TECTION. Ranges: D.C. voles: 100 mv ., $\begin{array}{llllll}0.5 & \text { v., } 5 & \text { v., } 250 & \text { v. } 12000 \text { v. A.C. voles. } \\ 2.5 & \text { v., } 10 \text { v., } 50 \text { v., } 250 \text { v.. } 1,000 \text { v. D.C. current: } 50 \mathrm{uA}\end{array}$ 0.5 mA . 5 mA ., 50 mA ., 250 mA . Size: 5
Complete with batteries $\mathbf{\$ 7 . 5 . 0}$ and test prods. \quad Posteries paid PANEL METERS AT BARGAIN PRICES A.C. AMMETERS 0-1, 0-5, 0-10, 0-15, 0-20 amp. F.R. 21 in . dia. ALL AT $21 /-E A C H$.
A.C. VOLTMETERS $0-25$ v., 0.50 v., $0-150$ v. M. 121 in Flush round ALL AT 21/-EACH. P. \& P. extra. $0-300$ v. A.C. Recr. M-Coil 2 in.

FOOT SWITCH

Suitable for Motors, Drills
Sewing Machines, etc 5 amp
250 volts. Price $17 / 6$ plus $2 / 6$
P. \& P.
230 v. A.C. SOLENOID. Heavy duty type. Approx 31b. pull. $17 / 6$ plus $2 / 6$ P. \& P. 12 V. D.C. SOLENOID Approx. IIb. pull. $10 / 6$ P. \& P. $1 / 6$.
50 v. D.C. SOLENOID. Approx.
lib. pull. iO/6, P. \& P. $1 / 6$.
50 v. D.C. SOLENOID. 21b. pull. i2le, P. 8 P. $1 / 6$. HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coilspeaker, morse key. 45/-plus 3/6d. p. \& p .
SEMI-AUTOMATIC "BUG" SUPER SPEED
MORSE KEY
7 adjustments, precision tooled,
speed adjustable 10 w.p.m. to as
high as desired. Weight $2 j 16.64 / 12 / 6$ post paid.

NICKEL CADMIUM BATTERY

1.2 v. 35 AH. Size 81 high $\times 3 \times 1 \frac{1}{}$. $30 /$ - each, plus $4 /$ P. \& P.

Sintered Cadmium Type 1.2 v . 7AH. Size: height 31 in . width $2 / \mathrm{in}$. X $1 \frac{1}{2}$ in. Weight: approx. 13 ozs. Ex-R.A.F
Tested $/ 2 / 6$. P. \& P. 2/6.

$4 \times .5$ volt unit series con-
nected, output up to 2 v . nected, output up to 2 V
st 20 mA . in sunlighe
30 times the efficiency of 30 times the efficiency of
selenium. $45 /=$. P. $\& .1 / 6 \mathrm{~d}$.

MICRO SWITCH

${ }^{3}$ amp. changeover contacts. $1 / 9$ eac

COMPUTER MULTI.CORE CABLE 12. $14 / 0076$ copper cores, each one insulbed by coloured
P.V.C. then separately mereened, the 12 metal braided dores laid together and P.V.C. covered overnill makling a cahle fuat
under I In. dia. but quite pliable. Price 7/8 per ft. Any length cut.

FLEX BARGAINS

Screened 3 Core Fiex. Each core $14 / 0076$ Copper P.V.C.
Insulated and coloured, the 3 corea laid together and metal braided overall. Price E 3.15 per 100 yde. ocil.
15 Amp 3 Core Non-kink. Plex. $70 / 7076$ insulated coloured cores, protected by tough rubber sheath, then black cotton braided with white tracer. A normal domestle thex as fitted
to $\mathrm{K} w$ fres. Regular price $3 / 8$ per yd. 50 yd. coll $£ 4.10$, or cut to your length $2 / 8$ peryd.
10 Amp 3 Core Non- Link Flex. 20/0076 Copper. Normal price $2 / 6$ per yd. 100 yd.coll 27.10 ,
 100 yd coll.
$23 / 0066$ triple core P.V.C. covered, circtular, normaliy sold CONSTRUCTORS' PARCEL

1. Piemsey minlature 2-gang tuning condeniser with built-in thimmers and wave gang switch. 2. Perrite alab aer rini with giving all component values for 6 -transistor circuit covering full medium wave and the long wave hand around Radio 2 . The three iteme for only $7 / 6$ which te haif of the price of the 10 AMP $24 V$ BATTERY CHARGER Ideal unit for garage, boat station, etc. $£ 22.10 .0$ each,
plue carriage at cost. BEHIND-THE-EAR DEAF AID Made by a very famous maker. Thoroughly overhauled, cleaned and reeconditioned. Guaran
price around 850 . Our price 810 .
ISOLATION TRANSFORMERS 200-250 Mns A must it y. A work on mains equipment. Preventa accidents separately screened by connection block. 100 watt $£ 3.10 .0$. 250 watt $£ 5$.

SLOW MOTION DRIVES

For coupling to tuning condensers, etc. One end inn. shaft,
the other end fits to a$\} \mathrm{in}$. whaft with grub acrews. Price $4 / 6$ each; 48/- dozen

LARGE PANEL MOUNTING
MOVING COIL METERS
Bize 5 hin . $\times 4 \mathrm{in}$. Centre zero $200-0-200$ micro amp. made by Gangano Weaton. Regular price probably 28 . Our price
59/6. Ditto but 100-0-100 78/6.
A.C. AMMETER

0-5 amps., flush mounting, moving fron. Ex-equipment but CIRCUIT BOAROS
Heavy copper on $3 / 32$ pasolin sheet, ideal for making power copper to be cut away with hackanw blade. Sino $x 5 \operatorname{in}$. $1 / 8$ each. 15in. $\times 5$ in. $4 / 8$ each.

6KVA AUTO.TRANSFORMER In rentilated oheet steel case-tapped $110 \mathrm{v}-140 \mathrm{v}-170 \mathrm{v}-$
$200 \mathrm{v}-230 \mathrm{v}$. Rx-equilpment but guaranteed perioct. $£ 19.10 .0$. Carringe at cost

REED SWITCHES
Olass encaned, swithes operated by external
welded contactu. We can now ofler 3 types:
Miniature. lin. long x approxlinately din. diameter. Will auke and break up to $\$ \mathrm{~A}$ up to 300 volts. Price $2 / 6$ each. 84/-dozen. 21 n. long $>3 / 161 \mathrm{n}$. dinmeter. Thle will break curreuts of up to 1 A , voltages up to 250 voits. Price $2 /$-each.
$18 /$ - per dozen.
Mat. Flat type, 2 in . long, Just over $1 / 1 \mathrm{Bln}$. thlek, approsiFiat. Flat type, 2in. long, Just over $1 / 1 \mathrm{Bln}$. thlck, approrl-
mately tin. Wide. The Btandard Type flatrened out, so that it can be aitid into a omanler space or a a arger quantity nayy

small ceramic magnets to operate these reed swtehes
$1 / 8$ each. $18 /$ dozen.

0.0005 mFd TUNING

CONDENSER
Proved design, ideal for etral
circuits $2 / 8$ each. 24/- doz.

SUB-MINIATURE MOVING
COIL MICROPHONE COIL MICROPHONE
 ex-equipment but if not in perfect working order they will PP3 BATTERY ELIMINATOR thue your small trassintor radio from ready to wire linto your set nad
adjustable high or low current 8/6 each.

CHART RECORDER MOTOR
Gmall (2tin. diameter approx.) inst rument motor with fixing
flange and apindle (1 in. long, tin, diameter); integral gear boz gives 1 rex. per 24 hours, 18/6.

IGNITION (E.H.T.) TRANSFORMER
 Price $29 / 6$ and $4 / 6 \mathrm{p}$. $\quad \mathrm{p}$.
I2-VOLT EXTRACTOR FAN BY DELCO Ideal for ventilation in caravan, car or
boat. f-bladed 3 in. diameter fan lnglde boat. 6 -bladed \sin. diameter fan thalde flange. stin. diameter fixing holo.
Length spprox. 8tin. Exceptional har-4-PUSH SWITCH
Idend to control fan heater, etc. 3 on switches and 1 ofl. Contacts rated at 15 amp on all switches. Price $4 / 6 \mathrm{eac}$
MAINS TRANSISTOR POWER PACK
 working.). Tukes the place of any of the tollowing batteries:
PP1, PP3. PP4. PP6, PP7, PP9, and others. Kit comprisen: anains trannfortmer rectifier, smoothing and load reasistor condensera and
plus $3 / 6$ postage.

INTEGRATED CIRCUITS

A parcel of integrated circuits made by the famous Plessey Company. A once in a itetime offer of Micro-electronic devices well bebw cont of manufscture. The parcel contains δ ICs all ingle silicon chip General Purpose Ampilfera. Regular price of which is well over fl cach. Full circuit detalls of the ICsare inctuded and in addition you will receive alist of so diferent parcel only 21 post pald or Lat and all technical data.

DISTRIBUTION PANELS

Juat what sou need for work bench or lab. 4×13 amp
nockets in metal bor to take atandard 13 amp fumed
 pluge and on/oil switch with neon waming light supplied complete with 7 feet of heavy able. Wired up ready wo work. $39 / 6$ lese plug ; $45 /-$ with fitted 13 amp plug: $47 / 6$ with Atted
16 mp plug. plus $4 / 6$. \& I .

HORSTMANN 'TIME \& SET' SWITCH

(A 30 Amp Switch.) Just the thing if you watt to come home to a warm time of your electric fires, etc., up to 14 hours from settiag time or you can use the witch to give a booston period of up to 3 hourn. Equally
suitable to control processing. Regular price probably around $\mathbb{E S}$. suitable to control processing. Regular
Bpectal snip price $28 / 8$. Poat and ins. $4 / 6$.

VARIAC CONTROLLERS

Whin these you can vary the voltage applled to your circult from tero to finil maina without generiting undue heat. One obvious appilcation therefore is to dima lightlog. We offer a iange of these, ex-equipment but little uned nind in every way ab good as new.
Any not no, will be exchanged or cash refunded. 2 ainp
e.19.6. 8 amp £8.19.8. 8 amp £12.19.6. 10 amp £15.19.8.

MOTORISED CAM SWITCH

 These have a normal mains $200-240 \mathrm{motor}$ which drives a ratchetmechanism geared to give one ratchet action every i minute approz. mechanism seared to give one ratchet action every if minute approi
The cam operates 8 switches (6 changeover and 2 on/oll thus appoz 600 clrcuit changes per hour are poselbie). Contacts, rated at 15 smps have been set for cerain swifch combinations but cain, no doubt. be attached to the shaft which extends approxlmately one inch. 47/6. atached to the

A.C. CONDENSERS

Theme make good voltage droppers for working low voltage appliances from A.C. mains the

See in the dark INFRA-RED MONOSCOPE

This equiptment is complete and poriable. Besically it consista of an infa-red image converter tube with optical lenses for focusing the
image and a Zambinal plie to provide the neceraary E.H.T. The inouoscope Is housed In a hide case size $9 \times 6 \times$ in. approx
Maic originally for the army for night observations, sniping, etc. Made originally for the army for night obaerationg, spiping, etc.
thle equipment has many melentife and practical applications ; thle equipment has many relentife and practical applications; a
itmited quantity ony is a arallable in original sealed carton. Price £. 18. 8
Note. Atho
Nots. Although unused in fact atlli in original sealed cartona, the equipment is approx. 25 reara old and consequently the Zambini
plle may not now be operating. Drying out might help but a better
idea might be to replace it with is batiery operated power unit

1 WATT AMPLIFIER \& PRE.AMP

5 eransintora-highly effleient made for use with lapeo head o4 but equally sultable for microphone or plek up.
Litrited quantity $89 / 8$. Full circult dlag. also showa Lape controle 5/-

3kW TANGENTIAL HEATER UNIT

This heater unit is the very iateat type. most blower heaters costing ats and mbre. Wo have a f few
only. Comprises motor, impeller, 2kW. element only. Comprises motor, impeller, 2 KW . element
snd ikW. element allowing switching 1,2 and 3 KW .
and with thermal sufety cut-out. Can be mited and with thermal sufety cut-out. Can be fitted
into nny metal line cabeor cabinet. Only need contur)
switch. 78/8. Postage and insurance $6 / 6$. Don't

RE-CHARGEABLE TORCH

Neat flat torch, fits unobtrusively in your pocket, contalns 2 Nicad cells and bulit-in charger. Plugs lnto shaver adaptor and charges from our atandard $200 / 240$ volt mains. American
made, bold originally at over 4 dolars. Our price only made, wold
18/6 ench.

3 STAGE PERMEABILITY TUNER

 This Tuner is a precision instrument made by the famous "Cyldon" Company
for the equally famous Radiomoble Car Radio. It is a medium whe tuner (but set of longwave collin available as an extra if required) with a frequency
 reduction gear for fine tuning sulp price this month, $12 / 6$ with clrcuit of
front end autable for car radio or an a general purpose tuner for use with
Amplifier. Pobt Free.

VARYLITE

FIll dim iacandescent ughting up to 600 watt from full brillinace to out Fitted on M.K. fush plate, name alze and Axing as standard wall ewitch so mang be fitted in place of this, or raount
plastic boz with controf knob 23.19 .6 .

ELECTRONICS (CROYDON) LTD

Dept. WW, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: 17 per single col, inch.
LINE advertisements (run-on): 8/- per line (appros. 7 words), minimum two lines.
Where an advertisement includes a boz number (count as 2 words) there is an additional charge of $1 /$ SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Boz number in the advertisement, c/o BOX NUMBERS: Replies should be addressed to the Boz
Wireless World, Dorset House, Stamford Street, London, S.E.1.
Wireless World, Dorset House, Stamf
No responsibility accepted for errors.

Advertisements accepted up to THURSDAY, 12 p.m., 4th JUNE for the JULY issue, subject to space being avallable.

CONTINUOUS Expansion
 Standard Telephones \& Cables, Micro-

 are growing fast. In order to keep pace with this consistent growth rate we require
Installation Engineers
 Technicians \& Testers

Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.

Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to The Personnel Officer. STC Chester Hall Lane, Basildon. Essex.

Test Technicians

Ref. 27221

The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.
Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equipment.

ELECTRONICS TECHNICIANS

Decimalisation..... the growing use of computers - the business machine explosion is upon us and with it comes a wealth of opportunity and big career prospects for trained Electronics Technicians.
This is the chance to develop your skills with Burroughs today's pacesetter in the competitive world of electronics. The opportunities are wide open and promotion into computer fields and managerial positions is purely dependent upon your ability. So, if you're aged between 20 and 25 with an electronics background - then let's get to know each other. In return, we offer good salaries and many company benefits including a generous car purchase assistance scheme.

Take a step into today's growth industry and meet the challenge that only an international electronics company can offer-fill in the coupon and send off for one of our application forms. The address is :
Geoff Lewis, Personnel Manager, Burroughs Machines Ltd., (Z). Heathrow House, Cranford, Hounslow, Middx.

Burroughs

SENIOR ENGINEERS £2,360-£2,780

Applications are invited for three posts based at the Regional Engineers offices at SOUTHAMPTON (Ref. W.W./1385.) BIRMINGHAM (Ref. W.W./1386.) and LEEDS (Ref. W.W./1387). These posts are for Senior Engineers attached to the Regional Engineers' staff.
The duties associated with these posts include:-

* Attendance at the commissioning of new Transmitter Stations and ancillary installations and accepting responsibility (on behalf of the Regional Engineer) for the satisfactory introduction of these Stations and installations into operational service.
* Providing technical assistance to Station Engineering Staff in the day to day operation and maintenance of Station Transmitter equipment.
* Providing some instruction to Station Staff on the design features of new equipment being brought into service.
* Providing technical and administrative assistance to the Regional Engineer.
In each case a good deal of travelling, sometimes at short notice, and mainly within the Region of appointment, will be involved. However, at times there is the possibility of extended periods away from the Regional Office.
Candidates should preferably be Graduate Members of a recognised Institution with substantial experience in the field of VHF and UHF Television Transmitter and Transposer installations. The successfulcandidateswill possess a wide understanding of these installations and ancillary equipment,
together with knowledge of the testing and measuring techniques employed. They will be expected to display and develop an active interest in automatic, remote control and computer techniques as related to Television Broadcasting, and to be aware of modern developments in all aspects of their work.
Starting salary will be in the above range according to age and experience.
Candidates interested in the above posts should write for an application form, quoting the appropriate reference and stating clearly which Region they wish to be considered for. Closing date for completed application forms, June 1 st, 1970.

The Personnel Officer, INDEPENDENT
TELEVISION AUTHORITY,
70, Brompton Road,
London, S.W.3.
Tel: 01-584 7011 Extension 482

ELECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

Vacancies exist in our AYLESBURY and CRAWLEY factories for:

SERVICE ENGINEERS

OUR PRODUCT: Flight

 Simulators.REQUIREMENTS: A complete theoretical knowledge coupled with at least 2 years' practical experience in one or more of the following: Digital computing techniques, hardware, software and computer peripherals. We are prepared to train suitable applicants who have considerable experience in transistorised and integrated circuits.
A knowledge of analogue computing techniques and principles of hydraulics systems would be advantageous. Service Engineers are also required for service on Visual Flight attachment, which involves closed circuit colour T.V. A thorough knowledge of commercial T.V. is essential. ONC or City \& Guilds Electronics.
TRAVEL: Must be prepared to travel anywhere in the U.K. and overseas.
SALARY: Negotiable but we are prepared to go as high as $£ 1,800$ for the right persons.

APPLICATIONS TO

Personnel Manager, REDIFON AIR TRAINERS LIMITED.
Bicester Road, Aylesbury, Bucks.,
Personnel Manager,
REDIFON FLIGHT
SIMULATION DIVISION LIMITED.
Gatwick Road, Crawley, Sussex.

ANTARCTIC EXPEDITION require

Wireless Operator/Mechanics

With current morse speod of 20 w.p.m. PMG Certificate, teleprinter experience essential. Salary from $\{1,003$ according to qualifications and experience with all living and messing free.

Foz further detalle apply to:
BRITISH ANTARCTIC SURVEY

East African Community

secilonal ENOINEZRS CRADEII (RADIO/RADAR)

* Salary $£ 2,239 — £ 2,506$ according to experience.
* Low Taxation.
* 25% Gratuity.
* Contract 21-27 months.
\star Subsidised accommodation.
* Education Allowances.

The Meteorological Department requires officers to undertake the installation, operation and maintenance of radio telecommunications and radar equipment. Candidates, up to 45 years, must possess either O.N.C. or City and Guilds Final Certificate in Telecommunications or have equivalent experience in the armed services and should have a good theoretical and practical knowledge of F.S.K., I.S.B. and S.S.B. receivers and transmitters, Mufax and facsimile transmitters and recorders. A good working knowledge of radar systems is essential.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference M2K/690413/WF.

comurier chafincering

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of $£ 900 / £ 1,350$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excelient holidav. perision and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1.000 North Circular Road,
London, NW2
quoting publication and month of issue. C R

B日G
 requires

SENIOR LABORATORY TECHNICIAN

In the Service Planning Section of its Research Department at Kingswood Warren. Surrey. The work will involve taking field strength survey measurements of existing V.H.F. and U.H.F. transmitters, and assisting in the planning and testing of sites for new transmitters. Candidates must have a good knowledge of electrical theory, preferably to ONC or equivalent level, and be familiar with electronics circuitry. The successful applicant must be able to show initiative and work without supervision. He will be expected to undertake field-work and must be prepared to work long periods away from base, including weekends, and to travel throughout the United Kingdom.
The starting salary will be $£ 1.453$ per annum land could be higher for exceptionally qualified candidates). and will rise to $£ 1.843$ per annum. If there are no candidates fulfilling the above requirements. the post may be filled initially at a lower grade.
Please write for an application form to
The Engineering Recruitment Officer,
Broadcasting House,
London W1A 1AA
quoting reference No. 70.E.2156.W.W.

Eastern Electricity

CHIEF ENGINEER'S DEPARTMENT

Third Assistant Engineer Measurements and Communications Section

Applications are invited for the above post which offers a good opportunity for a suitably qualified engineer. Candidates should have an H.N.C. in Electrical Engineering or equivalent qualification in Light Current Engineering and have had sound experience in the installation, commissioning and maintenance of a wide range of communications systems and associated equipment, including Automatic Telephony, Supervisory Control, Telemetry, Data Transmission, Mobile Radio, U.H.F. and S.H.F. Radio Links. The duties of the post will include assistance in the preparation
of standard specifications for the supply, installation and maintenance of such equipment.
The ability to write good reports and to draft standard procedures is essential.
The successful candidate will be encouraged to broaden his interests and assist in the Measurement work of the section.
 Conditions).

Apply by letter to the Chief Engineer, Eastern Electricity, P.D. Box 40, Wherstead. Ipswich, IP9 2AQ by 1st June, 1970.

AN INTERNATIONAL COMPANY ENGAGED on WORK for NATO

SENIOR TECHNICAL AUTHORS

about $£ 2,600$ p.a.

The Nato Air Defence Ground Environment Company was formed by a group of the world's leading electronic manufacturers for the Project Management of this large complex Air Defence System for N.A.T.O., embracing numerous sites throughout Europe.
Within our Field Services and Support Division at our central project office in Feltham, Middx., our Technical Manuals team are engaged on the provision of high quality manuals, giving the necessary technical description, operation and maintenance requirement for the "NADGE" system.
In order to strengthen this team we are now interested in meeting Senior Technical Authors of at least HNC (Electronics) standard who have had extensive experience in technical publications dealing with radar, computers and display techniques as applicable to manual, automatic and semi-automatic systems.
Commencing salaries in the region of $£ 2,600$ reflects that we expect successful candidates to be of above average ability and capable of working with the minimum of supervision.
Applications in the form of a brief résumé of qualifications and experience to date should be forwarded to:-
The Deputy Personnel Manager,
NADGECO Limited, 98 The Centre, FELTHAM, Middx.

ELECTRONICS TECHNICIAN

Applications are invited for a new vacancy in the Research Laboratories of Pfizer Limited at Sandwich. Kent for an electronics technician to carry our servicing and repair work on the nuclear magnetic resomance and mass spectrometry equipment used in chemical analysis.

The position requires a man with a sound theoretical training in an electronic trade coupled with considerable practical experience in servicing. fault diagnosis and repair of complex electronic equipment.

Previous experience of scientific instrumentation is highly desirable, although specific training in the equipment involved will be given.

This appointment is particularly suitable to a man holding an O.N.C. who is interested in applying his technical skills to an increasing range of sophisticated equipment in a research environment.

The work. which is in pleasant rural coastal surroundings. in well-equipped laboratories offers a competitive salary. non-contributory pension and death benefit scheme. Removal expenses will be paid.

Write for further details and application form to:
D. W. Sells,

Personnel Manager, Research Division. Pfizer Limited, Sandwich, Kemt.

RADIO ENGINEERS CIVIL AVIATION-ZAMBIA

> * Salary £2310 to £2590 according to experience.
> * Low Taxation.
> * Contract of $\mathbf{3 6}$ months.
> * 25\% Tax-free Gratuity.
> * Educational Allowances.
> * Subsidised Housing

Duties will involve the maintenance, overhaul and installation of ground terminal radio communication equipment and navigational aid at Airports and Flight Information Centres.
The equipment includes radar systems, H.F. and V.H.F. transmitters and receivers, I.L.S. and D.F. systems and tape recorders. Candidates, who should be under 55 years of age, should have practical experience and a knowledge of theoretical principles within this field.
In addition they should have attained one of the following:-
i) completion of a 5 year apprenticeship,
ii) a service trade certificate,
iii) an I.C.A.O. certificate,
or iv) equivalent.

Apply to CROWN AGENTS, 'M' Division, 4, Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference No. M2Z/690315/WF.

There are vacancies within our
 Quality Assurance Department for

ELECTRONIC TESTERS

Successful applicants will be engaged on the testing and trouble shooting of airborne/ground communications/ navigational and telegraphy equipments the majority of these systems are solid state).
All are within the UHF and VHF ranges, they comprise:-
Frequency Shift Keying Equipments, VOR/LLS and multichanne! VHF transmitters/receivers, also radio altimeters, notch aerials and synthesisers.
Applicants should have previous experience either in industry or the forces. A final C. \& G. in Telecommunications or H.N.C. Electronics would be advantageous.
The Company operates a contributory pension scheme with allied benefits. There is a sports and social club on the site as well as a subsidised canteen.
Holidays are three weeks per annum with an additional day for each year's service up to a maximum of five days.
These positions carry staff status and overtime is paid.

Please write or telephone

P. R. M. Bebb, Personnel Officer,

Standard Telephones and Cables Limited, Qakleigh Road, New Southgate, N. 11.

STC
Tel.: 01-368 1234 (Ext. 2828)

Fall Iriall frininams

The Radar and Equipment Division of the United Kingdom Electronics \& Industrial Operations, part of the E.M.I. Group requires Field Engineers for work in connection with Aviation Electronics.
The successful applicants will be based at various locations throughout the United Kingdom, but removal and travelling costs will be subsidised and living away allowance will be given to make the position attractive to both married and single applicants.
Applicants preferably should be qualified to H.N.C. level or equivalent and have experience of Radar Field work. Knowledge of Solid State Electronics would be an advantage.
There are ample opportunities for career development within the E.M.I. Group of Companies for suitable applicants, plus Contributory Pension Scheme, Free Life Assurance and Fringe Benefits.
These vacancies will probably appeal to ex-service men with relevant experience.
Interviews will be held at Pershore or Hayes. Please write or telephone for Application Forms to:-
J. J. SWEETMAN, PERSONNEL OFFICER, U.K. ELECTRONICS \& INDUSTRIAL OPERATIONS. ELECTRIC \& MUSICAL INDUSTRIES LIMITED. HAYES, MIDDLESEX.
TELEPHONE: 01.573 3888. EXT. 523

RADIOLOGICAL PROTECTION SERVICE
 (Department of Health and Social Security and Medical Research Council) Clifton Avenue, Belmont, Sutton, Surrey
 requires

 Junior Technician

 Junior Technician and Technician

 and Technician}

POST I Apprentice Technician required for duties in the Department of Electronics to assist in the construction of nucleonic instruments. Preference will be given to those candidates with aptitude and interest in electronics and mechanical practice. Part-time day release for further studies. Five day week. Three weeks' annual leave. M.R.C. Conditions of employment. Salary according to ex. perience at a point on the scale $£ 467(-922)$ plus London Weighting. Applications with the names and addresses of two referees to the Administrative Officer at the above address, quoting reference 70/4/17.

POST 2 Technician required for duties in the Department of Electronics to maintain nucleonic instruments and systems. Previous experience of testing and 'fault-finding' on Electronic equipment is essential. Two ' A ' level G.C.E.s desirable but not essential. Salary according to qualifications and experience at a point on the scale $£ 982(-1255)$ plus London Weighting. M.R.C. Conditions of employment.
Applications with the names and addresses of two referees to the Administrative Officer at the above address, quoting reference 70/4/9.

OPPORTUNITIES IN TELECOMMUNICATIONS

Men with good telecommunications knowledge are required to be responsible for telephone switching, transmission equipment and cables on London Transport. The work involves shift duties and consists of maintaining, testing and fault finding on the following types of equipment:
(a) Automatic telephone exchange and associated equipment.
(b) Radio and television equipment.
(c) Underground cables and lines. A sound knowledge of one of these categories of work is required. The possession of City and Guilds Certificates (or equivalent) in telecommunications subjects 49 and 300 would be an added advantage.
The rate of pay including a variable incentive bonus averages $£ 28$ for a 5 day. 40 hour week. Additional payments are made for overtime, night work and rostered Saturday and Sunday duties.
These positions offer:-
FREETRAVELON AND OFF DUTY, SICK PAY AND PENSION SCHEMES. Please apply in writing to:
Superintendent of Recruitment, Griffith House, 280 OldMarylebone Road,
London, N.W.1.
(Ref. A.T.L).

RADIO
 OPERATORS

There will be a number of vacancies in the Composite Slgnals Organisation for experienced Radio Operators in 1971 and in subsequent years.

Specialist training courses lasting approximately nine months, according to the trainee's progress, are held at intervals. Applications are now invited for the course starting in January, 1971.

During training a salary will be paid on the following scale:

Age 21	$£ 848$ per annum
". 22	$£ 906$
". 23	$£ 943$
". 24	".
" 25 and over	$£ 1,023$

Free accommodatlon will be provided at the Training School.
After successful campletion of the course, operators will be paid on the Grade 1 scale:

Age 21	£1,023 per annum	
.. 22	¢1,087	,
23	[1,150	"
24	£1,214	"
25 (highest age point)	¢1.288	

then by six annual increases to a maximum of f1.749 per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must normally be under 35 years of age at start of training course and must have at least two years' operating experience. Preference given to those who also have GCE or PMG qualifications.

Interviews will be arranged throughout 1970.
Application forms and further particulars from: Recrultment Offlcer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos., GL52 6AJ Telephone No. Cheltenham 21491. Ext. 2270

Medical Physics Department QUEEN ELIZABETH HOSPITAL

Electronics Technician

To work in a group responsible for the care, servicing and development of medical electronic equipment in use throughout the Hospital. Applicants should possess ONC, or equivalent qualification, and at least five years' appropriate experience. Whitley terms and conditions (Medical Physics Technician Grade III). Salary scale $£ 1,180-£ 1,500$. Pleasant working conditions in new laboratory. Five day week. Further informátion from the Chief Physicist.

Applications, quoting one referee, to Administrator,
QUEEN ELIZABETH
MEDICAL CENTRE,
BIrmingham, 15
stating age, qualifications and experience

The Government of Zambia

 MANTENANCE

 MANTENANCE ENGINEB

 ENGINEB}Required by the Government of Zambia, Zambia Broadcasting Services, Ministry of Information, Broadcasting and Tourism on contract for one tour of 36 months in the first instance. Commencing salary Kwacha 3,300 ($£ \mathrm{Stg}$. 1,925) rising to Kwacha 3732 ($£$ Stg. 2,177), plus an Inducement Allowance of $£$ Stg. 804 per year, payable direct to the officer's bank in the U.K. Gratuity 25% of total salary drawn. Both Gratuity and Inducement Allowance are normally TAX FREE. Free passages. Accommodation at moderate rental.

Education allowances. Liberal leave on full salary or terminal payment in lieu. Contributory pension scheme available in certain circumstances.

Candidates, between 25-55, must have passed City and Guilds final certificate in Telecommunications or equivalent and should have had at least eight years experience with a broadcasting organisation, with particular experience in the installation of recording equipment and studio control equipment

The officer will be required to main-
tain and service audio-visual aid equipment and instal and operate public address/recording/film projectionequipment when and where required. He will be required to supervise workshops and staff in the absence of the Senior Maintenance Engineer.

Apply to GROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2Z/691029/WF.

THE UNIVERSITYOF LEEDS

Applications are irvued for a post in the following Departmeni:

FOOD \& LEATHER SCIENCE

SENIOR EXPERIMENTAL OFFICER

Funds have been made available from the Sainsbury Centenary Grant for the Advancemem of Research and Education in Fond Science for the appointment of an experienced graduate electrical (eiectronic) engineer or similarly qualified person to join a research group investigating the chemistry of the substances responsible for the flavour of foods, using combined gas chromatography-mass spectrometry. His main duty would be to care for the sophisticated instruments involved and to develop the Instrumentation further. He would be available also for consultation by other research groups in the Department.
Closing date. 25th May 1970.
Reference number $40 / \mathrm{Cl}$.
SALARY SCALES: Senior Experimental Officer § 1.460 - 1.940 .

Applications (three copies) stating age, qualifications and experience and raming three fcferees should be sent to the Registrar, The University, Leeds LS2 95T from whom further particulars may be obtained.

Electronic Test Engineers

Opportunities exist at our Haverhill Plant for Electronic Test Engineers who are capable of fault finding on VHF/UHF mobile and fixed equipment. Applicants should have either; C \& G Final Certificate in Electronic Radio/TV Servicing or Telecommunications Technicians Intermediate Certificate.
The Company is the UK's leading manufacturer of radio-telephone equipment and is engaged in a major expansion programme designed to double present turnover over the next five years. Opportunities for promotion are therefore excellent. The factory is situated in an expanding town and assistance with housing through the Local Council is possible, together with relocation expenses where appropriate.
The successful applicants will join our permanent staff and will enjoy the benefits of a Company which is offering first class financial rewards, pension and sick schemes.
Please apply to:
Mrs. C. M. Dawe, Personnel Officer,
Pye Telecommunications Ltd.,
Colne Valley Road, Haverhill, Suffolk
Telephone: Haverhill 2321 Ext. 26

Commissioning Engineers

This is a Company that is going places. We are already Europe's leading manufacturer and the world's largest exporter of VHF/UHF radiotelephone equipment. If our growth rate has been exceptional, our growth potential is even greater.
In order to meet expanding demands we now need a number of additional Commissioning Engineers in our Systems Installation Department. The position entails the checking of major UHF/VHF/Microwave systems in the works and their installation and commissioning in the field. The work involves travel both within the UK and anywhere in the world.
We are looking for applicants with two or three years' experience in the installation, testing and fault-finding or servicing of VHF/UHF equipment and/or microwave systems. Applicants who do not have these qualifications or experience may be suitable, but could also be considered for positions in Production Test with a view to transferring at a later date.
Starting salaries of up to $£ 1,500$ (dependant upon age and experience) are offered together with good fringe benefits and relocation expenses to Cambridge.
Brief details of experience and qualifications should be sent to: R. D. Crabtree,

Personnel Manager.
Pye Telecommunications Ltd 12
Newmarket Road, Cambridge.

Buckinghamshire Education Committee

SLOUGH COLLEGE OF TECHNOLOGY

Principal: W. Bosley, M.Sc., Ph.D., F. Inst.P.

DEPARTMENT OF ENGINEERING LECTURER GRADE I in ELECTRONIC ENGINEERING

 (EN/2/70)To teach electronic subjects in Electrical Techniclans and Radio, TV \& Electronic Servicing Courses. Applicants should possess the H.N.C. or a suitable C. \& G. Full Technological Certificate and must have recent TV development or servicing experience. Teaching experience desirable but not essential.
Salary on Burnham Technical Scale, viz. Lecturer I $£ 1,110-£ 1,955$ plus additions for qualifications and training.
Removal expenses up to $£ 100$ may be paid in approved cases.
Further particulars and application forms (please quote reference number) can be obtained from the
Vice-Principal,
Slough College of Technology,
William Street, Slough, Bucks.,
to whom completed forms shouid be returned within 14 days of the appearance of the advertisement.

532

STUDENT ELECTRONICS TECHNICIAN

required to work in well-equipped Electronics Oepartment to assist in the construction of instruments. Preference will be given to those candidates with aptitude and interest in electronic and mechanical practice. Oppontunities for advancement. Salary eccording to age and experience on MRC scala ranging from $\mathbf{£ 5 5 7 - £ 1 0 1 2 \text { . Applications to the }}$ Olrector, NEUROPSYCHIATRY UNIT, MEOICAL RESEARCH COUNCIL LABORATORIĖS, WOOdmansterne Road, Carshalton. Surrey. Ouoting ref: 262/2.

533

BRISTOL POLYTECHNIC
 DEPARTMENT OF NAVIGATION MARINE RADIO \& RADAR

Applications invited for the following post, duties to commence 1st September, 1970:

SENIOR TECHNICIAN

Ref. No. T66/82
Appllcants should be over 21 and hold intermediate City and Guilds in Electronics or Radio Communications, or other approprlate quallications. Duties include servicing and maintenance of electronic and electrical equipment as used in Merchant Ships and Civil Aircraft. 38 -hour, 5 -day week with generous holiday and sick pay schemes. Permanent post with superannuation under Local Government conditions of service.

Salary Scale: Senior Technician (Grade T.3)-E965£1,130
Starting salary dependent upon age, qualifications and experience. An addhional $£ 50$ or $£ 30$ will be paid to an applicant with appropriate National Certificate or C. \& G. qualifications.

Further particulars and application forms (to be returned within fourteen days of this advertisement) from Chief Administrative Officer, Bristoi Polytechnic, Ashley Down, Bristol BS7 9BU. Please quote post reference number in all communications

$$
\begin{aligned}
& \text { BROADCASTING } \\
& \text { ENCNIERS } \\
& \text { UCANDA }
\end{aligned}
$$

* Salary $£ 2,010-£ 2,506$ according to experience
* Low Taxation.
* 25% Gratuity.
* Contract 21-27 months.
* Subsidised accommodation. * Education Allowances.

Duties will include the maintenance of broadcasting equipment in transmitting stations and studios and outside broadcasts and recordings in remote districts.

Candidates should possess City and Guilds Final Certificate in Telecommunications (with Radio) or equivalent and have wide practical experience of technical broadcasting equipment including high power M.F. transmitting and studio control equipment.

Apply to CROWN AGENTS 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference $\mathrm{M} 2 \mathrm{~K} / 690995 / \mathrm{WF}$

ELECTRONICS OPPORTUNITIES AT THE

CLINICAL RESEARCH CENTRE

Gichrercouilletimics

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON QUALIFIED OR NOT!

VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits.
RE-LOCATION EXPENSES available in many instances. CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
$37 \frac{1}{2}$-hour, 5 -day, office-hours week.
WRITE or phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required, quoting WW3.

 The success of our Software Systems Division in Liverpool has meant that we require an additional team member for our technical publications unit to work on commercial handbooks, air technical publications, technical reports and editorial projects. Candidates should have a good electronics background and at least three years' experience as an author and an I.T.A.I. or I.T.P.P. qualification would be a distinct advantage.
 The environment is highly professional and the ability to take the initiative is a prerequisite. Salaries and prospects for advancement are excellent. The usual large company fringe benefits apply.
 Please telephone 0512369881 ext. 209 or apply in writing to: W. D. Halsall, Manpower Manager (LUC/202|E), Electronics Group, The Plessey Company Limited, 39 Cheapside, Liverpool 3.

TEST ENGINEERS

The leading U.K. Manufacturers of high grade T.V. monitors require test engineers for their rapidly expanding test department.

Situated in the Berkshire town of MAIDENHEAD the company offers pleasant working conditions, good salaries, and a friendly environment.

Duties will cover the testing of monochrome and colour T.V. monitors and other ancillary sophisticated television broadcast equipment manufactured by the company.
Previous experience on television equipment is not essential but would be an advantage.
Candidates must have a thorough knowledge of electronics and testing procedures.
Reply to Prowest Electronics Ltd., Boyn Valley Road, Maidenhead, Berks.

Telephone : Maidénhead 29612

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager,
Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).

Phone: 01-397 5411

BROADCAST RELAY ENGINEERS

are required for the

ISLAND OF MASIRAH

(Off the coast of Muscat and Oman)
Applications for contract employment for a one year unaccompanied tour of duty are invited from engineers with experience of the operation and maintenance of high power radio transmitters and who are of third vear City and Guilds Telecommunications Technicians Certificate or equivalent standard.
Salary $£ 4.000$ per annum plus a tax free allowance of $£ 350$ per annum for single, or $£ 865$ for married unaccompanied officers.
Free furnished accommodation and passages are provided.
Further details and application forms can be obtained from:

The Personnel Officer,
Diplomatic Wireless Service
Foreign \& Commonwealth Office.
Hanslope Park.
Wolverton. BUCKS.

HOMERTON COLLEGE, CAMBRIDGE TEGMNGAN

required for the C.C.T.V. studio in this College of Education. The post involves the operation and maintenance of our cameras, monitors (including H.F.), three Sony half-inch V.T.Rs, and the associated control, audio and lighting equipment. Skill in photography and graphics and ability to instruct in the operation of equipment would be additional qualifications. Salary on scale T4 (£1130-£1345, under review).
This is a responsible post in a congenial environment, with much scope for an enthusiast.
Please write in the first instance to the :
Secretary, Homerton College, Cambridge.
553

AC-Delco require a Maintenance Electrician (Electronics)
AC-Delco have an interesting job at their Dunstable plant for an Electrician with experience of industrial electronic equipment such as Resistance Welding equipment such as Resistance Weld
Machines. High Frequency Heating Machines, High Frequency Heating equipment and
instruments.
Good rate of pay and all the advantages of working for a successful and progressive company.

[^10]
APPOINTMENTS

SITUATIONS VACANT

A IRCRAFT RADIO/RADAR MAINTENANCE ENA GINEERS and MECHANCS with workshop experfence in Civll and Milttary Airborne Communications
and Radar equipment. 3 weeks' hollday per year penand Radar equipment. The weeks hoiday per year, panport (Charter) (C.i.) Ltd., Willow Road, Colnbrook, Bucks. Tel. Colnbrook 2654.
A $_{\text {RE }}^{\text {RE }}$ YOU INTERESTED IN HI FI? If so, and you Trade, an excellent opportunity awaits you at Telesonic ${ }^{\text {Ltd... }} 92$ Thottenham Court Road, London. W.1. Tel. B Techniclan col expanding EDTVATION. Television units, responsibility for VHF distribution system, experience of helical scan video tape recorders an advantage but not essential (training course provided). Salary Technictan Grade III £965- £1,130. Appllcation forms and further particulars from the Bursar, Berkshire Col-
lege of Education, Woodlands Avenue, Earts, Reading, Berks, return with in 10 diays.
CHIEF ELECTRONICS TECHNICIAN required to maintaning electronic equipment for use in the teaching and research laboratortes of the Departments of Electronics and Physics. Salary: $£ 1.801-£ 2.034$ p.a... according to age and experience. Further information dent, Departments of Physics and Electronics. Chelsea College, Manresa Road, London. S.W. 3 . 551 E Englneertics Laboratory, Queen Mary College (University of London), Mile End Road. E.I. Work includes development, construction and maintenance of instrumentation for reseach. Adaptability, Infiative and
experitence in electronic techniques required. Salary at experience in electronice the E , $029-1,300$ p.a. (but a substantial increase is under review), plus London Weighting up to £ 125 p.a. and posstble $£ 30$ or $£ 50$ qualincation supptement. Five-day week. Four weeks annual leave. Pension
scheme. Excellent working condilions. Letters only to scheme. Excellent working conditions. Letters only to
Registrar (N/ST) should state full detalis of experience
$\mathbf{R E D I F O N}^{\text {EDTD. require sully }}$ experlenced TELEELECTRONICS INSPECTORS. ENGINEERS and salaries. We would particularly welcome enquiries from ex-Service personnel or personnel about to leave
the Services. please write siving full detalls toThe Personnel Manager. Redifon Ltd., Broomhill Road, $\mathbf{S}^{\text {ENIOR}}$ techiniclan/technictan required for the convariety of electronic apparatus in modern chemistry teaching and research laboratories. Salary in ranges
 age and experience (but a substantial
review) plus London Weighting $£ 125$ p.a. and possible review) plus London Weighting $£ 125$ p.a. and possible
$£ 30$ or $£ 80$ quallfacation allowance. F Five-day week. Four/ave weeks annual leave. Pension scheme. Letters End Road, E.1, stating which post applled for, and present experlence, any quallfications. TECHNICIAN, to be responsible for Oxygen Therapy 1 and other medical equipment. Suitable for men with lechnical knowledge and know-how, not neces-
sarily in the medical fleld. Training available for sarily in the mestical fies. Training avallable
successful applicant. $\& 18$ s. for 40 hour week. Apply: successsul
Personnel Opficer, University College Hosplai, Gower
Street Street, W.C.1. BUSINESS of the highest standing, 1 established over 40 years N.W. London Owner requires PERSONAL ASSISTANT with servicing experience. Good postition and prospects for keen and capable ${ }_{537}$ man State age an
$\mathbf{W}^{\text {E }}$ Have Vacancies for Four Experienced Test Applicants are preferred who have Experience of Fault Finding and Testing of Moblle VHF and UHF Moblle Equipment. Excellent Opportunitses for promotion due to Expansion Programme. Please apply to Personnel Works. Halg Road, Cambridge. Tel. Cambridge 51351 , Extn. 327.

TECHNICAL INSTRUCTORS

Urgently required for instructing our customers maintenance personnel in the operation and maintenance of FLIGHT SIMULATORS. We have openings in both digital and colour close circuit projected television fields. Must be able to work to a preprepared syllabus and able to prepare notes on courses.

Applications to:
Personnel Manager
REDIFON AIR TRAINERS LIMITED,
Bicester Road,
Aylesburv, Bucks.

TELEVISION ENGINEER

for outside servicing in the LONDON area. with experience in closed circult medical, scientiflc, or allied applications, required. A knowledge of $1^{1 "}$ Hellcal scan V.T.R.s and colour television would be an added advantage.
Company car provided.
Salary according to experience.
Any further information and interview SIEREX LIMITED, 15/18 Clipstone Street, London, WIP 8AE. Telephone 5802464.

TV MECHANICS FOR NEW ZEALAND

RADIO and TV MECHANICS-are you dis satisfied with your present working conditions, high taxation and lack of progress ? Why not shift to the sunny South Pacific and join the friendly team at TISCO, New Zealand's largest Service Company! Being purely in Television Service, our mechanics are important people, not just numbers on a time sheet.
All 30 of our Branch Managers are mechanics. You can be with us in 3 months if you write now. Requirements : 5 years' experience and $£ 20$ towards the family's fare, remainder of which will be paid. Age limit for persons wishing to come to New Zealano is 45. Mr. B. I. Wells, Tech. Supervisor, Tisco Led., PrIvate Bag, ROY
NEW ZEALAND.

ENGINEERS

Have you considered a career in Technical Aushorship? If you have sound experience in electronics and abiltcy to write clear concise English we can offer positions as Technical Authors. The salary range is £ $1500-£ 2000$ plus with excellent prospeces and

ARTICLESAFOR SALE

BRAND-NEW ELECTROLYTTCS $15 / 16$ Volt $0.5,1,2$

 S $5,8,10,20,30,40,50,100 \mathrm{mfds}, 8.5 \mathrm{~d} ., 5 \% \mathrm{E} .12$ seriesresistors Carbon film watt 10 ohms to 1 Megohm 1.5 d . Wirewound 5 watt 15 ohms to 15,000 ohms 10 d . postage $1 /=$ per order. The C.R. Supply Co., 127 Ches-
terfield Road, Sheffeld, S8. BUILD IT in a DEWBOX qualtty plastics cabinet $\mathrm{B}_{2} \mathrm{in} . \times 2 \frac{1}{21} \mathrm{in}$. x any length. D.E.W. Ltd. (W) RIngwood Rd., FERNDOWN, Dorset. S.A.E. for leaflet Write now-Right now. COIL WINDER. Avo. Douglas No. 6 coll winder complete with motor and gears, etc. Cost \&150. As of Cbemistry, The University, Southampton. Department COLOUR TELEVISION COMPONENTS. All spectallst ing parts for home constructed colour recelvers, includCatalogue from: Forgestone Components, Kettering ham, Wymondham, Norfolk.
GOR SALE-"' Wireless World,' 1930-1948, 25/- dozen - W1, 43 Dundonald Road, Colwyn Bay

How to Use Ex-Govt. Lenses and prisms. Booklets ENGLISH, 469 RAYLEIGH RD., HUTTON, BRENT.

MUSICAL Miracles. Send 8.a.E. for detalis of 1 Cymbals and Drum Modules, versatile independent bass pedal unit for organs, pianos or solo, musica novelties, wan-waa kits (49/-). Also bargain components list reed switches etc. D.E.W. Ltd., 254 Ring-
wood Road, Ferndown, Dorset. NEW CATALOGUE No, 18, containing credit vouchers surplus electric and mechanical components, price $4 / 6$ post free. Arthur Ballis Radlo Control Lid., 28 Gardner
Gtreet, Brighton, Bussex. NEW Precision 1 MHz crystal oscinators in even 7 transistor circuit $6^{\prime \prime} \times 3^{\prime \prime} \times 3^{n \prime}, ~ £ 5$ each. Details and further lists s.a.e. B. M. Sandall, Amber Croft,
Higham, Derbyshire, DE5 GEH.
$[560$ P.m.4. power supplies, 3 amp, £ 15 each. Some 4-15 never been used and cost over $\& 30$ each Telephone, evenlags only, PUT 3358

R ADIO MIKE (S.N.S.), as new, $£ 60$. C.C.T.V. 1 Apprentice. St. Austell, Cornwall. UHP, COLOUR and TV SERVICE SPARES. Leading time british make incts and lin time base units incl. ERT transformer. \&b, carrak tuner, 4 transistors, knobs, circult data. Eastly adjusted for use as 6 position UHF tuner, $£ 1 / 10 /=$ P/P $4 / 6$ MURPHY $600 / 700$ serles complet UHF conversion kits incl. tuner, drive assy, 625 IF amplifier, 7 valves, accessories, housed in special cabinet plinth assembly
$£ 8 / 10 /-$ or less tuner $£ 2 / 18 / 6, P / P$ 10/. SOBELL/GEC 405/625 switchable IF amplfier and output cheasts 32/6, $\mathbf{P} / \mathbf{P} 4 / 6$. URF tuners incl. valves, slow motion drive assy, knobs, gerial panel, $25 / 10 /-$. P/P 4/6. UHF IIst avallable on request. New or manufacturer tested
VHF tuners, AT7650 Philips 19 TG 170 , Sobell 1010 . KB Featherlight 35/\%. AT7639 Peto Scott, Decca. EkcC Ferranti, Cossor $50 /-$ Cyldon C 20/-, AB miniatur
with UHF injection incl. valves 78/6. Ekco 283/330 Ferrantl $1001 / 6$ 25/-, New flreball tuners, Ferguson HMV, Marconi type 37/6. Plessey 4 position push button tuners with UHF injection, incl. valves, 58/6. Many others avallable. P/P all tuners $4 / 6$. Large selection channel colls. Surplus Pye, Ultra, Murphy, 110^{*} sca P/P 4/6. Perdlo "Portorama" LOPT assy incl. DY86 sultable for transistorlsed TV, 40/-, P/P $4 / 6$. LOPTs PYE/LABGEAR transistorised booster unlts Bi/B3 or UHF, battery operated 75/-, UHF Masthead $\boldsymbol{2 B} / 5 / 0$ 172 WEST END LANE, LONDON, N.W. 6 (No. 28 or W. Hampstead Tube Station). MAIL ORDER: 6.
GOLDERS MANOR DRIVE. LONDON, N.W.11. 660 "WIRELESS WORLD" substantlally complete, 1937 ing, 1941 to 1962 , four missing. offers, Haydon. Byro House, Slines Oak Road, Woldingham, Caterham
YAXLEY SWITCHES, 1 pull 24 way $1^{\prime \prime}$ spindle. $5 / 5$ Dover. p.p. Holly Electronics, 167 Folkestone Road

NOTICE TO DEALERS! OFFERS INVITED FOR THE FOLLOWING ITEMS LOT OR PART LOT

Mullard Valve Tester complete with Cards. 400 Assorted American and British Transistors 3. 35 Assorted Dlodes

Omron Relays-Brand New, Type MK 403P, MK Klystrons for "X" Band Radar:-

Sperian VA.N. 115 - 4 off 4 off Syivania K.4208 - 4 off These are brand new and compl
certificate.
6. 100 Asso
(Nssorted Radio Valves (New).
Datum Trpe RC 21 U19-7 off
Imhof Type 1230
Imhof Troe 1076 D
Imhof Trpe 1076 C
Most of these ore 2 off
Many more liems too numerous condition. Many items of test numerous to list. For appointment to view phone:-

GOSPORT 86210
Mr. Parks or Mr. Ward

ANALOGUE COMPUTER

General purpose Mark A. In current use
Consistling of 3 off consoles and assoclated equipment including falr representation non BRITISH ARP
BRITISH AIRCRAFT CORPORATION,
Tel: Woybidge asss5 Ext. 246
548

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above sublects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

WITWORTH TRANSFORMERS LTD.
 Dept. WW., 26 All Saints Road, North Kensington, W.II
 Telephone: 01-229907I. 9 a.m. till 5 p.m.
 TELEVISION LINE OUTPUT TRANSFORMERS
 PRACTICALLLY ANY MAKE OR MODEL SUCALLY ANY MAKE OR
 EKCO, FERRANTI, DYNATRON Replacement cases 16/= each. please state model. S.A.E. for return of post quotation. TERMS: Cash with order or C.O.D., please add 4. for postage
 C.O.D. orders will be charged 6s
 Transformers fully guaraneed.

PATENT NOTICES
 TRADE MARK No. B. 878772 consisting of the letters

 1 R-F-T and device and registered in respect of "Electronic Valves" was assigned on 23 July, 1969, by T.O.Supplies (Export) Limited of 2 a Westbourne Grove Supplies (Export) Limited of 2 a Westbourne Orove Rudolistrasse, 101 Erfurt. East Germany; WITHOUT WAS THEN IN USE.

OFFICIAL NOTICES
 TRADE MARK No. 676935, consisting of the word

 resistors" was assigned on 17 March, 1970, by Sprague Products Company Inc., of 210 Beaver Street. North Adams, Massachusetts, O.S.A., to Sprague ElectricalCompany of Marshall Street, North Adams, MassaCompany of Marshall Street, North Adams, MassaChusetis, U.S.A. WITHOUT THE GOODWILL OF THE

B BUSINESS OPPORTUNITIES

A LONDON RETAIL TELEVISION and Electrical Director. Event the highest standing requires Executive visased on retirement of present manazing director, This is an exceptional opportunity to acquire a sound only should write in confidence, stating age and detalls of background and experience, indicating amount of capitable avallable. Box W.W. 538 Wireless World.

TEST EQUIPMENT - SURPLUS AND SECONDHAND
SiGNAL generators, oscilloscopes, output meters, wave etc., etc. in stock -R T. \& I. Electronics, Ltd., Ash

RECEIVERS AND AMPLIFIERSL

SURPLUS AND SECONDHAND
$H^{R O}$ Rx5s, etc., AR8s, CR100, BRT400, G209, S640, A etc., etc., tm stock.-R. T. \& I. Electronics, Ltd. Ashvi
4986.

NEW GRAM AND SOUND

 EQUIPMENTCONSULT Arst our 76 -page Lllustrated equipment Catalogue on Hi-Fi (6/6). Acvisory service, generous terms to members. Membershlp $7 / 6$ p.a.-Audio Supply Assoclation, 18 Blenhelm Road, London, W.4 $\mathrm{G}^{\text {LASGOW.-Recorders bought, sold, exchanged; }}$ versa.-Victor Morris, 343 Argyie St., Glasgow, C. 2 SHURE Cartridges, Post Free, M3D $£ 4.19 .6 . \quad$ M $44 / 5 / 7 / 7$
 ${ }_{\text {\& }}^{16.10 \text {. Goldring G800 }}$ £ 7.17.6. Garrard SP25 Mk. II 2/9. Mayware \& Co., 17 Heronsgate, Edgware, Middr

TAPE RECORDING ETC

IF quallty, durablity matter, consult Britaln's oldest transfer service. Quality recards from your sultable tapes. (Excellent tax-free fund ralsers for schools, Grand.-Sound News, 18 Blenheim Road, London, W.4. ${ }^{01-995} 1661$. Y Studo/Location Onit. S.A.E. Leaffet. Deroy Studios High Bank, Hawk St., Carnforth, Lancs.

VALVES

FOR HIK

FOR HIRE CCTV equipment, Including cameras, F monitors, video tape recorders, and tape-any period.
-Details from Zoom Televislon, Chesham 6777

ARTICLES WANTED

$\mathbf{W}_{\text {anced }}^{\text {ante }}$ all types of communications receivers Electronics, Litd., Ashillle Old Hall, Ashville Rd., Lon. Elon. E.11. Ley. 4986.
 High new valves, transistors, etc. Stan Wille ths, 37

VALVES WANTED

$\mathbf{W}^{\text {E }}$ buy new valves, transistors and clean new comquotation by return-Walton's wireless Stores, 55 quotation by return.-Walton's
Worcester St., wolverhampton.

CAPACITY AVAILABLE

A IRTRONICS LTD., for Coll Winding-large or smal! production runs: Also PC Boards Assemblles. Suppliers to P.O.. M.O.D., etc. Export enquirles welcomed. METALWORK, all types cabinets, chassis, racks,
 for smal mulling and capstan work up to ava bai.-
PHILPOTT'S METAL WORKS, Ltd. Chapman St.

Experienced Mftr./Working Jewellers

have spare capacity to diversify with Electronics manufacturer. Fine/soft soldering-Rhodium Plating of small component parts.
Strictest confidence.
Box No. WW392
SMALL servicing and repals contracts undertaken Field service any distance. Best possible rates for top-quality work. Cambrian Electronics, .96a High St.
Frimley. Surrey.

TECHNICAL TRAINING

BECOME "Technically Qualifed" in your spare time B guaranteed diploma and exam. home-study courses Clty odo Gulds, etc., hishly informative i20-page Gulde-Iree.-Chambers College (Dept. 837K), College House, 29-31 Wrights Lane, Kensington, London, W.8. [16 CITY \& GUILDS (Electrical, etc.), on "Satisfaction Cor Refund of Fee terms. Thousands of passes. For detalls of modern courses in all branches of elec trical engineering, electronics, radio, T.V.i automation (Dept. 152 K), Aldermaston Court. Aldermaston, Berks.
$\mathbf{R}^{\text {ADIO ofilcers see the world. Sea-golag and shore }}$ R appointments. Trainee vacancies during 1970 . Grants avallable Day and boarding students. Stamp lor prospectus. TRINNING IN Radio, TV and Electronics 1 through world-famous ICS. For detalls of proven home-study courses write: ICS, Dept. 443, Intertex house, London, S.W.8.
\boldsymbol{T} and radio A.M.I.E.R.E., City \& Gullds, R.T.E.B. 1 certs., etc., on satisfaction or refund of fee terms thousands of passes; for full detalls of exams and home training courses (including practical equipment) in a
branches of radio. TV, electronics, etc., write for 132 page handbook-iree; please state subject.-British $\begin{array}{ll}\text { Institute of Engineering Technology (Dept. } & \text { 150K), } \\ \text { Aldermaston Court. Aldermaston, Berks. } \\ \text { [1s }\end{array}$

A NEW HI FI pulse $\begin{aligned} & \text { pate } \\ & \text { F.M. TUNER M:70 }\end{aligned}$

- 14 Si TRANSISTORS, 4 DIODES
TUNING METER
- DISTORTION-LESS THAN

SUITABLE FOR STEREO

- SIGNALNOISE-60db

NOMINAL
$88-108 \mathrm{Mc} / \mathrm{s}$
11° by 5° printed clrcuit board for above tuner with fitted tuning gang, together
with complete shopning list and sesembly details
75/- (approx. cost of remaining componenta-46)

- A HIGH FIDELITY TUNER FOR ABOUT 10

Printed circuit accommodates all components. you just insert each one-lf you can read and use a soldering iron-45 mins.
to obtaln all the commonents reruired
If you are bulding a Hi Fit get up, an exceilent tuner is a must; a tuner that will Impress you as well as your friends. p. \& \& p. $5 /$
Mail Orders to: DEPT. WW, MULTEL
30 BAKER STREET LONDON
W. 1

WW-113 FOR FURTHER DETAILS

LEARN HOW COMPUTERS WORK WITH COMPUKIT

INTEGRATED CIRCUITS

NEW LOW PRICES • FULLY GUARANTEED

Data Sheets all $1 /-$ per type except L900
$014 / 923$ and Plessey $2 / 6$.
mullard

$18 / 8$
$85 /-$
$30 /-$
$15 / 8$
$19 / 6$
$35 /-$
$25 /-$
$14 / 6$
$35 /-$
$29 / 6$
$26 / 6$
$78 /-$
$99 /-$
$89 /-$
$19 / 6$
$39 / 6$
$39 / 6$

$87 / 6$

$42 / 6$
$49 / 6$
$15 / 6$
$29 / 6$
, มurpaw A. MARSHALL \& SONS LTD.
28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2
CALLERS WELCOME $9 \cdot 5.30$

MACLEANS 6＂FAN
230 v AC 3 Amp． 2.800 rpm
55／2 pp 6／－
IMLOCK COLLAPSIBLE ALUMINłUM
CHASSIS FRAMES $10 \frac{1}{2}^{\prime \prime} \times 8 \frac{3^{\prime \prime}}{} \times 6 \frac{3^{\prime \prime}}{}$ ． 20／－pp 3／－
AIR CONTROL INST．BLOWER MOTORS
Single phase 200－250v AC $2,800 \mathrm{rpm}$ ．
Outlet size $2 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime} . £ 315 \mathrm{~s} .0 \mathrm{~d}$ ．pp 7／6．
20－WAY 3－POLE P．O．TYPE JACK STRIPS
$101^{\prime \prime} \times 3 \frac{1}{2}$＂．19／6 pp 3／6．Ex－equip．
CLAUDE LYONS VOLTAGE STABILIZER
Type TS－2－5440 Inpuit 198－258v 47－65
Output $240+0.25 \% v 12 \mathrm{Amp} 288 \mathrm{KVA}$
Ex－equipment Brand new condition
Ex－equipment．Brand new condition
E350． 0 d．plus 22 carriage

Size $7^{\prime \prime} \times 19^{\prime \prime} \times 13^{\prime \prime} .230 v$ AC Input．
Output 6v 5 Amp $\times 2 ; 18 v 7.5$ Amp．DC
Fully Transistorised
Marginal adjustment on output
£35 0s．Od plus E 3 carriage．
ANALEX POWER SUPPLY
Size $13^{\prime \prime} \times 19^{\prime \prime} \times 51^{\prime \prime} .230$ vAC Input
$36 v$ 14A Output．Stabilized．
Ex．Equip．Fully Tested．New condition，
$£ 270 \mathrm{~s} .0 \mathrm{~d}$ ．plus $£ 210$ s．carriage
VEEDER－ROOT MECHANICAL COUNTERS
5 digit；lever operated；resetable
11＂．Ex－equip．10／6 pp 2／6
DORMAN LOADMASTER
$250 / 440 v$ AC． 5 amp triple pole circuit breaker 29／6 plus 5／－pp．
Brand new with fixing bracket．
TRANSFORMERS
TRANSFORMERS
Input 230v AC
Output： $6.3 \mathrm{v} 8 \mathrm{Amp} \times 2 ; 6.3 \mathrm{v} 4 \mathrm{Amp} \times 3$ ．
Size $43^{\prime \prime} \times 43^{\prime \prime} \times 6^{\prime \prime}$ approx．
New condition rested．45／－pp 12／6．
Input 230v．Output：6．6v 122 Amp
Size $6 \frac{1^{\prime \prime}}{2} \times 7 \frac{1}{2}{ }^{\prime \prime} \times 9^{\prime \prime}$ including terminals
Brand new．£150s．Od plus £2 carriage．
ASHGROVE TRANSFORMER
0－240v AC In
$228 v$ AC 6.6 Amp Out
¢88． 8 ．
£8 8s．Od．plus $\mathbf{3 0} /-$ Carriage
TRANSFORMER
$0-250 v$ AC In
0.240 v AC 15 Amp Out
$9^{\prime \prime} \times 9^{\prime \prime} \times 7 \frac{1}{2}^{\prime \prime}$ ．
f12 0s．Od．plus 40／－Carriage．
PARMEKO TRANSFORMER
0－115／250 49／60 Hertz
$0-125 v$ AC 13 Amp Out
$8^{\prime \prime} \times 11^{\prime \prime} \times 9^{\prime \prime} .2$ only
PARTRIDGE TRANSFORMER
0－115／265 AC In
240 v AC 13 Amp Out
240 V AC 13 Amp
$9 \frac{1^{\prime \prime}}{} \times 9^{\prime \prime} \times 12^{\prime \prime}$.
E15 0s．Od．plus 50／－Carriage
ADVANCE VOLTSTAT TRANSFORMER 190－260v AC In
240v RMS Out
300 Watt
$30^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$
E30 0s．Od．
GARRARD 2 TRACK TAPE DECKS MAG TYPE
Solenoid operated $230 \mathrm{v}, 1 / \mathrm{Zips} 50 \mathrm{v}$ Solenoid Ideal for contin．tape players etc．
$\mathbf{£ 7 1 0 s . 0 d . e a c h . ~ B r a n d ~ n e w ~ i n ~ m a n u f a c t u r e r s ~}$ cartons．pp 22／6d
OMRON MIDGET POWER RELAY
Type MK1 230v AC．New 9／6d．each pp．1／6d TELESCOPIC AERIALS CHROMED TELESCOPIC AERIALS CHRO Ball jointed base $4 / 6 \mathrm{~d}$ ．each pp， $1 / 6 \mathrm{~d}$ ．New Ball juinted base 4／6d．each pp，1／6d．New
4 MULLARD DM160 INDICATORS 4 MULLARD DM160 INDICATORS green plastic cover ex－equipment．7／6．pp 1／6 CERAMIC STEREO CARTRIDGE Output $135 \mathrm{~m} / \mathrm{v}$ at $1 \mathrm{~cm} / \mathrm{sec}$ ．
Freq．response 40－12000 cps．Load 1 meg． Separation better than 15 db ．
Tracking weight 5－6 grams． 30
MALLORY ELECTROLYTICS
25，000，MFD 25 VDC 55.000 ，MFD $15 v$ DC 40．000，＂ $10 V D C$ 27．000，＂ $15 v$ DC $\begin{array}{llll}20,000, & 30 v D C & 59,000, & 75 v \\ 37,500, & ., & 15 v D C & 32,000,\end{array}$ All at $10 /$／＂each．pp 2／6．Screw terminals． POWER SUPPLIES
AC INPUT 200－250v：
$20 \mathrm{v} 4.5 \mathrm{Amp} ; 10 \mathrm{v} 3 \mathrm{Amp} ; 10 \mathrm{v} 300 \mathrm{MAmp}$ DC £150．0．pp，30／－
Toggle Switches，single pole，double throw． Ex－equip．New condition，10／－doz．，pp 2／6．

Keañestar

A REVOLUTIONARY NEW PROOUCT cuts out plugs

It＇s the Newest，Safest and Quickest way to connect Electrical Equipment to the mains
No plugs－no sockets－no risk of bare wires．To connect anything
electrical．from an osclloscope to an electric drill．simply open the fuse housing．depress the keys，insent the wires and close the housing．A neon light on the tront of the Keynector glows to indicate proper connection，Multitparallel connections can be made up 10 13 amps．Keys are colour coded and lettered 46 dick olus 518 \＆ issued by

E．B．INSTRUMENTS
orusion of electronic brokens itd
49.53 Pancias Road London．N．W．

WW－119 FOR FURTHER DETALS

HR
 Components

RCA Semiconductors
from stock
Cat．$\&$ Price List by return Hams－free OSL cards \mathbb{f}
＇Ham Tips＇with every order．

This month＇s offer：
5－W 27 MHZ Citizens Band Mobile Transmitter Set comprising ：－
Transistors
$\begin{array}{llll}40080 & 10 / \text {－each } & \text { 2N591（2）} & 6 / \text {－each } \\ 40081 & 13 / 3 \text { each } & \text { 2N2869／2N301（2）} 15 / 9 \text { each }\end{array}$
$\begin{array}{lllr}40081 & 13 / 3 \text { each } & \text { 2N2869／2N301（2）} 15 / 9 \text { each } \\ 40082 & 37 / 6 \text { each } & \text { 1N2326 } & 5 / 6 \text { each }\end{array}$
（Send for Application Note No．SMA．20）
2－Metre A－M Solid State
Transmitter Set comprising ：－
Transistors
40080 10／－each $40231(2) \quad 4 / 9$ each
$40519(2) \quad 13 /$ each $40311(2) \quad 6 / 9$ each
$40290(2) \quad$ 23／－each $40312(2) \quad 9 / 6$ each
N3193（2）3／3 each

（Send for＇Ham Tips＇leafiet）

A wide range of semiconductors always in stock．Make sure of your copy of＇Ham Tips＇and OSL card， both free with order，by placing your order with us NOW．

Send for catalogiue to

EQUIPMENT AND Croft House Banerolt，Hitehin Herts Telephone：Hitchin 50551／2／3 and 52202

EXCLUSIVE OFFERS LATEST TYPE HIGHEST QUALITY CABINETS

FOR STANDARD 19 ＂RACK PANELS TOTALLY ENCLOSED

 Widéble gided These cubinete will take rack pawele
both sldcs，that lat back and front
are drilled are dalle and
tapped all the way
down every for for thls purpose．They
are fitted with
are ＂Inatantit＂potent
fully adjustable fully adjustable
rack mounts which are vertically and
horizontally horizontally adjust－
nble－these allow
the papele recessed when they are fitted with pro－ jecting componento
and it is deaired to
enclose doors．Whem by \star Other features include sll comers and elges rounded．
Interior fittings tropicalised．Removable built in cable ducts．Removable built in blower ducts．Veatilated and insect proofed topa．Doora fitted expanding bolts it ordered with cabivets．Made in U．．8．A．－cont the American Government 8107 before devaluation．Finlahed io g Primer PRICE E26．10．0 each（Carriage extr Doors are not peeded if panels are mounted back and front and they are not required to be enclosed．
TYPE C： 80° high $\times 27^{\circ}$ deep $\times 22^{\circ}$ wide．American Standard First Grade totaty onclosed ventiluted 19^{-}rack panel mounting cabinetr，made by Dukane，U．8．A．
 Pinlehed in grey these cablinctat have been used but are in gool condition but if decoration is of impor
recommended they are re－mprayed belore use．
TYPR D： 76° high $x 18^{\circ}$ diep $\times 22^{\circ}$ wide．These are sllghtily simuller and finished la black othersiee they are Made by R．C．A．of U．S．A． TYPE E： 08° high $\times 16^{\circ}$ deep $火 22^{\circ}$ wide，totally enelosed ventilated rack mounting cahinets made by Motorola，
U．S．A．These units have front and rear doore and rack U．S．A These units have front and rear doore．The rack mounte are atandard 19° wide．The actual troat panel helght is $4^{\prime} 10^{\circ}$ ，the remaluing 9° being atted with rem PRICE 89.10 .0 ench（Carriage ertre） TRANSPORT：Wo have madespeciul economical trinsport arrangenents for thene cabinets to ensure
undarnaged and to avold expensive cratug．

40－page liat of over 1,000 diferent Items in stocic available－keep one by you．	
© Servomex A．C．7 Automatic Voltaze Reku－ Lator， $30 \mathrm{smps}, 250 \mathrm{y} . .50 \mathrm{o} / \mathrm{s}$ ＊R．C．A． 5 －Element Yajl Arriys $420 \mathrm{me} / \mathrm{h}$ 2750 $£ 310$	
n－1 Rawin Receiver	
1 Secretary Photo Copie	
0x 1385 Photo Copl	
ovoz	
es suita ble video work． 2400 ft ．	
and jn transparent outer plastic esse．	
foot long 8^{7} sides Trianzular Lattio	
11ins R－390 Communjeations	
$0.5 / 80.0 \mathrm{~m} / \mathrm{es}$	
offman CV－157 1SB／SSB Conv	
aokay 128 A Y L．F．Receiv	
M．I．Tape Recordera BTR－1	
editoo RA－10 ISE	
4 Likhtweirht Tel	
raph Re	
Stick microphones	
ce	
Mas 12 to 18 inch sides uD to 20	
TED ${ }^{\text {a }}$ VIDEO TA	
Good price paid	
c．Testers with plug boards．．．．．．．．．．．．．．．．．．．．．．．．．．905 0	
－New Marnetie Recording－Tapo made by	
大1．Used ditto＂Scoteb＂＇Brand 4800 ti．．．．．．${ }^{\text {e } 40}$	
MONTH＇S BARGAIN，POWER SUPPLY，rack mte． 31 in．，hap． 830% ．A．C．$/ 12 \mathrm{v}$, D．C．；outp． $130 \mathrm{v} .25 \mathrm{~m} / \mathrm{s}$ D．C．inc．FREE twin amplitier．spares，manual，in wood transit／tool box 20io．$\times 8 \mathrm{in}$ ．$\times 8 \mathrm{in}$ ；all unused． usually es barksin（carr．pd．©．K．） $50 /$－	
俍 Data Hirb Speed	
lason IIIuminated Drawin	
Stelma Telegraph Distortion Monltors．．．．．． $\mathrm{E} 25^{0}$	
Teletype Model 14 Tape Pun	
© Freiz Alrport＂Weather Man＂Masts ＊Uniselectors 10 bank 25 way full wipe ex．	
Precision Majus Futer Units new．．．．．．．．．． $81 \begin{aligned} & 10 \\ & 10\end{aligned}$	
rriake extrast contonalla	
Wo have a large quantity of＂bits and pleces＂ we cannot list－please read un your requirementa wo can probably help－all onquiries answered	

P．HARRIS
ORGANFORD－DORSET WESTBOURNE G505

VACUUM

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC. GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS,
R. F. HEATERS.
FREE CATALOGUE
V. N. BARRETT 8. CO. LTD. MAYO ROAD, CROYDON,

CRO 2QP. ol-684 9917-8-9

AMERICAN
 test and communications equipment * General Catalogue an/104 $1 / 6$ * manuals offered for most U.S. equipments
 SUTTON ELEGTRONICS
 Salthouse, Nr. Holt, Norfolk. Cley 289

GLASS FIBRE OPTIC

is0t glass fibres with three avaifable in any length plaskic fibre. P.V.C. sheash 0.080 in. dia Used like wire but to convey light eo remore or inaccessible positions for inspection, panel indicators, (post freet): $1-9,3 /=i \quad 10-49$ applications. Prices per fr. SYSTEM 696 \& CO.
15 BELL ROAD. EAST MOLESEY
SURREY

WANTED RELAYS

1. GEC Sealed Type M1574, 12 v 180 ohms. 2. Ericsson or Plessey Plug-in type 24v 670 ohms with eransparent cover, exactly same size as GEC sealed. 4. STC type 4189 GD or 418 CM 700 ohms. 5. Elliott Plug-in type 9 M16/350 7b base.

PHONE ANY TIME 021-454 8305

WE PURCHASE ALL FORMS OF ELECTRICAL EQUIPMENT AND COMPONENTS, ETC.

CHILTAEAD LTD.
7, 9. 11 Arthur Road, IRealing.
Berks.
Tel: 582605

Private enquiries, send two 5d stamps for brochure
THE QUARTZ CRYSTAL CO. LTD

NEW EDITION

THE MICROELECTRONICS DATA BOOK

by Motorola
60/-
THE RA
RADIO AMATEUR'S HANDBOOK 1970 edition by A.R.R.L. 48/-. Postage $4 / 6$

PAL COLOUR TELEVISION by Boris Townsend. 60/-. Postage I/
SERVICING WITH THE OSCILLOSCOPE by Gordon J. King. 28/.
Postage 1/-
TRANSISTOR, THYRISTOR AND DIODE MANUAL by RCA. 20/-. Postage $1 / 6$.
HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS by Jack W. Streater. 28/-. Postage 1/-.

PARAMETRIC AMPLIFIERS by Howson and Smith. $68 /-$. Postage $1 / 6$.
ALL-IN-ONE GRAMOPHONE BOOK by Vivian Capel. I5/-. Postage 1/-.
SEMICONDUCTOR POWER CIRCUITS HANDBOOK by Motorola. 20/-. Postage 1/-.
SCR MANUAL by General Electric Company. 25/. Postage 1/6.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of Britlsh and American Technical Books
19-21 PRAED STREET,
LONDON, W. 2
Phane PADdington 4185 Closed Sat. I p.m.

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

J. Black

OFFICE: 44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033 STORES: 30 BARRETTS GROVE, N. 16 Tel: 01-254 1991

BUILD YOURSELFA TRANSISTOR RADIO

RADIO EXCHANGE CO. LTD. Dept WW. 61 High Street, Bedford. 'Phone 023452367
-Open 10-1. 2.30-4.30. Ser. 9-12

COULD IT BE MADE?
 from Perspex?
 from Duraform?
 from Oroglas?

WRAITHE BROTHERS LIMITED make almost anything in Plastics
Velvet SIreet. Blackburn, Lancashlre Tel. 50505

TaCHOS

BAKER 12 in. MAJOR £8
 $30-14,500$ c.p.s., 12 in . double cone woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of
14,000 gauss and a total fux of $145,000 \mathrm{gauss}$ Maxwells. Bass resonance 45 c.p.s. Rated 20 watts. Voice coits available 3 or 8 or 15 ohms. Price 68 . Module kit, $30-17,000$ c.p.s. Size $19 \times 12 \frac{1}{2} \mathrm{in}$. with tweeter, crossover,
baffle and instructions. Ideal for Hi Hor P.A. Pott Free $£ 10.19 .6$
LOUDSPEAKER CABINET WADDING 18 in . Wide, $2 / 6$ per fe. run. Post
ELECTRIC MOTORS
(120 v . or $240 \mathrm{v}, \mathrm{A}_{\mathrm{C}}$)
Clock wise I,200 R.P.M. off load Heavy duty 4 pole 50 mA . Spindie $\frac{7}{4} \times 3 / 20$ in. diameter. $\begin{array}{ll}\text { Size } 2 \frac{1}{2} \times 2 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in} \text {. } \\ \text { BARGAIN } \\ \text { PRICE } & 17 / 6\end{array}$ Post TRANSISTOR AMPLIFIER WITH LOUDSPEAKER A ielf-conta ined portable
mini pa. sistem. Many
uses-Parties Mses-Partias, Baby Alarm, Intercom Telephone or
Record player. Amplifier. Attractive rexine covered cabinet ixe $12 \times 9 \times 4$ in.,
with powerful 7×4 in. with powerful 7×4 In. One watt power amplifier. new in Maker's carton with

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER $\begin{array}{lll}\text { 200/250 A.C. } & \mathbf{4 2} / 6 & \begin{array}{l}\text { Post } \\ \text { Leaflet S.A.E. }\end{array}\end{array}$
\star ALL PURPOSE TRANSISTOR PRE-AMPLIFIER \star $9-12 \mathrm{v}$. and $\mathbf{3 0 4}-300 \mathrm{v}$. DRITISH MADE $9-12 v$.

Response 25 cmb . to $25 \mathrm{Kc} / \mathrm{s}, 26 \mathrm{db}$ gain. For use with valvo | or transistor aquipmene. Full instuction |
| :--- |
| Brand new. Guaranted. Detaile S.A.E. |$/ 6$ each RETURN OF POST DESPATCH - CALLERS WELCOME

HI-FI STOCKISTS - SALES - SERVICE - SPARES
RADIO COMPONENT SPECIALISTS 337 WHITEHPRSE ROAD. CROYDON. Tel: 01-684 1665
WW-122 FOR FURTHER DETALS

Thanks to a bulk purchase we can offer
BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, ete. Their quality is as good as any other on the market, in no way are imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase
price and postage will be refunded
S.P. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 160 \mathrm{ft} & 2 /- & 5 \mathrm{in} . & 600 \mathrm{ft} . & 6 /- \\ 5 \frac{1}{2} \mathrm{in} . & 900 \mathrm{ft} & 8 /- & 7 \mathrm{in} . & 1,200 \mathrm{ft} & 9 /-\end{array}\right.$
L.P. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 225 \mathrm{ft} & 2 / 6 & 5 \mathrm{in} . & 500 \mathrm{ft} & 8 / 6 \\ 5 / 3 \mathrm{in} . & 1,200 \mathrm{ft} & 10 / & 7 \mathrm{in} . & 1,800 \mathrm{ft} . & 13 /-\end{array}\right.$
 Postage on all orders $1 / 6$
COMPACT TAPE CASETTES AT HALF PRICE
60,90, and 120 minutes playing time, in original plastic library boxes.

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD. MIDOX.

Ashford 53020
WW-123 FOR FURTHER DETAILS

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.),
Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc.

Good prices paid J. BLACK

44 Green Lane, Hendon, N.W. 4 Tel. 01-203 1855 and 3033

TAPE RECORDING YEAR BOOK
COMPLETELY NEW NINTH EDITION WITH COMPREHENSIVE CATALOGUE SECTION AND ARTICLES BY EXPERTS PRICE 10/6d. from 7 Alverstone avenue, EAST BARNET, HERTS.

> ELUORESCENT LOW VOLTAGE LIGHTING Pitted perspex difrusers, 12 ins .8 watt, $70 /-\mathrm{F}: 21 \mathrm{lng}$. 13 watt, $85 /$-; less diffuser. 18 ths. 15 watt. 70 Transiutor invertera for 40 watt or twin 20 watt
tubea at $150 /-$ for aingle 20 watt tabe $100 /-$ plus postage. New and guaranteed.

CONDENSERS. Electrolytice, $1000 \mathrm{mfld} 257,4 / 8 ; 2800 \mathrm{mpld}$ $450 \mathrm{v}, 5 /-100 \times 200 \mathrm{mild} 350 \mathrm{~F}, 7 / 6 ; 60 \times 100 \mathrm{mld} 450 \mathrm{~F} ; 7 / 6$. LOUDSPEEKKERS. Now boxed, famone maker, 25 watt 10 fil/

 10/- plus $3 /-\mathrm{mln}$. oarrisge.
S.A.E. ALL ENOUIRIES PLEASE. MAIL ORADER ONLY 46 KENILWORTH ROAD, EDGWARE, MIDDX. HA8 8 YG.

Tel: 01-9589314
WW-125 FOR FURTHER DETAILS

WE PURCHASE

COMPUTERS. TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS. MOTORS, TRANSISTORS, hesistors. CAPACITORS. POTENTIOMETERS, RELAYS TRANSFORMERS ETC. ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 1781

We can't wait to expand your laboratory

in $\mathbf{2 4}$ hours you can hire some of the World's top instruments at competitive prices

ring
LABHIRE

INIDEX TD ADVERTISERS

Appointments Vacant Advertisements appear on pages 107-118

	Pags		page		agb
Al Factors.	72	H.H. Electronic	46	Racal Instruments Led..	65
Acoustical Mfg. Co,, Ltd.	11	Harmsworth Townley \& Co.	14	Radio \& TV Components Lid.	85
Adcola Products, Lid. .		Harris Electronics (London) Lt	48	Radio Components Specialists	1
Advance Electronics Ltd	43	Harris, P.	119	Radio Exchange Co..	0
Amplivox Ltd.	19	Hart Electronic	74	Radiospares Lid.	120
Anders Electronics, Lid.	34	Hatfield Instruments Lid	41		2,45
A.N.T.E.X. Ltd.	62	Henrys Radio Ltd. .	83, 84	R.E.L. Equipment \& Co	2, 45
A.P.T. Electronics.	26	Henson, R., Lid.	72	R.E.L.C. Hi-Fi Centres Li	119 77
Associated Automation Lid.	30			R.S.C. ${ }^{\text {Hi-Fi Centres }}$ Lit	
Associated Electronic Engineers,	33	I.C.S., Lid.	80, 72	R.S.T. Valves........... Rendar Instruments Lid.	48
Ates Electronics Lid.	96	I.M.O. (Electronics) Lid.	35	Rendar Instruments Ltd.	
Audio Eng. Ltd...	18	Instructional H?udbook Suppl	120	Salford Electrical Instruments Lid.	
Audis, B. B., Lid.	18	Ivoryet Lid.	121	Samsons (Electronics) Lid.	
Auriema Lid.	41	Ivoryet Lid.		Samsons (Electronics) Lid. .	
Avo Ltd.		Jackson Bros. (London) Lrd	32	S.D.C. Electronics Lid..	
Barnet Factors, L	89	Jasmin Electronics	40	Service Trading Co.	03
Barrett, V. N.	120	Johns Radio	72	Servo \& Electronic Sales Lid	
Batey, W., \& Co.	46			Shure Electronics Ltd.	
Bentley Acoustical Corporati	73	Keytronics	96	Sinclair Radionics Ltd.	71
B.I.E.T.	13	Kinver Electronics, Led	96	Smith, G. W., (Radio) Ltd.	
Bi-Pak Semiconductors	88			S.N.S. Communications Ltd.	
Bi-Pre-Pak, Lid.	81	Labhire Ltd	122	Solartron Electronic Group Ltd.	, 6
Black, J.	121	Lasky's Radio Lt	96	South Midlands Construction Lid	
Britec Ltd.	48	Lawson Tubes.	72	Starman Tapes.	63
Brookes \& Gatehouse	66	Ledon Instruments L	24	S.T.C. Mobile Radio Telephone	
Brown, N. C., Lid.	39	Level	10	Stephens Electronics......	
Brown, S. G., Ltd. . . . ${ }^{\text {Butterworth \& Co. (Pub.) }}$	28	Light Soldering Develop	32	Sugden, A. R., \& Co. (Eng.) Ltd	
Butterworth \& Co. (Pub.) I	88	Light Soldering Develop Limrose Electronics	32 118	Sugden, J. E. Sutton Electronics Ltd	20
Cesar Products Ltd. (Yukan)	120	Linear Products Lt	8	Sypha Sound Sales Ltd.	
Chiltmead, Lid.		L.S.T. Components	75	System 696 \& Co.	120
Computer Training Products	46	Lyons, Claude, Lid	27		
Consumer Microcircuits Lid.	8			Tape Recording Magazine.	
		Magnetic Tapes Ltd.	95	Tape Recording Year Book	121
Dabar Electronic Prods.	72	Marconi Instrument	21	Teclare Lid..	
Dalyne Components	21	Marriott Magnetics Lid.	47	Telequipment Ltd.	
Daystrom, Lid.	37	Marshall, A., \& Sons (London)	6, 118	Teleradio, The, (Edmonton)	
Diathane Lid.	74	Mills, W		Teonex Led.	
Diotran, Ltd.	74	Milward, G. F	92,93	Thompson, A. J.	120
Dolby Laboratories Inc.	42	Modern Book C	$\begin{array}{r} 94 \\ 120 \end{array}$	Thorn Radio Valv	
E.B. Instruments	119	Morganite Resistors Lid	4	Trio Corporation.	
Electrical \& E/Trader Y/Book	95	Motorola Semiconductors L	56	Trio Instruments Lid.	28
Electro-Tech Sales	02	Mullard Ltd.	52, 68		
Electromodul		Messrs. Multel	118	United-Carr Supplies Led.	12
Electronic Brokers.	1, 121	Multicore Solders Ltd.	er iv	Universal	74
Electronics (Croydon) Lid.	106				
Electrosil Ltd...		Neco Electronics (Europe). Ltd.	121	Valradio Ltd.	
Ėlectrovalue	98	Newmarket Transistors Ltd. .	24	Vitavox Ltd.	6
Electro-Winds, Lid.	104		20	Vortexion Lid	
E.M.I. Varian Led.	17	Nombr			
English Electric Valve Co. Ltd.			35	Walker-Spencer Components	
Enthoven Solders Ltd..	20	Omron Precision Contr	121	Watts, Cecil E., Lid.	
Erie Electronics	16	Osmabet Lid.........	121 88	Wayne Kerr, The, Co Webber, R. A., Lid. . .	
Farnell Instruments Ltd.	18			Wel Components Ltd.	84
Ferrograph, The, Co. Lid.		- Parker, A. B..	84	Welwyn Tool Co..	41
Field Electric Ltd.,	119	Pattrick \& Kinnic.	73	West Hyde Developments Ltd.	76
Firnor-Misilon Ltd.	95	P.C. Radio Ltd.	99	West London Direct Supplies	104
		Pinnacle Electronics Ltd.	25	Weyrad (Electronics) Lid.	104
Gardners Transformers Ltd.				Wilkinson, L., (Croydon) Ltd.	
General Video Systems Ltd....	40,49	Quality Electronics Ltd.,	68	Wraithe Bros. Ltd.	120
Grampian Reproducers Ltd.....	13	Quarndon Electronics Lid. .	38		
Greenwood, W. (London) Ltd.	39	Quartz Crystal Co. Ltd.,	120	Z. \& I. Aero Services Lid.	

| ERSIN | |
| :---: | :---: | :---: |
| 5 CORE | |
| 5 | SOLDER |

The main asseribly function of most electronics companies is the manufacture of soldered ioints. Mass-Soldering is not an ant. When Multicore Soldering Chemicals, Liquid Fluxes and EXTRUSOL High Purity Solder alloy are used in combination, mass-soldering becomes a logical application of a Multicore technical process, achieving the highest standard of production

XTRUSOL

 High Purity Extruded Solderprovides the most economical soldering. Its high purity and freedom from oxides, sulphides and other undesirable elements result in the following advantages :-

- Less dross on initial melting.
- More soldered joints per pound of solder purchased.
- Less reject joints. - Improved wetting of electronic components \& printed circuit boards.
- More uniform results. All Extrusol is completely protected by plastic film packaging from the moment of manufacture until it is used. Available in bars and pellets. Can be released under AID authority and supplied to USA QQ-S-571d

PC. 2 MULTICORE TARNISH REMOVER

removes tarnishes and inorganic residues as the second half of a precleaning process before soldering. It leaves the copper unaffected.

PC. 90 MULTICORE

 PEELOFF SOLDER RESISTis a temporary solder resist which can be peeled off with iweezers after soldering, leaving the original clean surface. It can be used for masking gold plated edge connections and holes to which heat sensitive or other components must be added later.
PC. 41 MULTICORE ANTI-OXIDANT SOLDER COVER which forms a liquid cover on the solder bath either side of the solder wave, largely preventing the formation of dross.

PC. 80 MULTICORE

 SOLVENT CLEANER removes organic contaminants such as grease, perspiration and residues of organic solutions from prior processes, as a precleaning process before soldering. It is also very efficient in removing rosin-based flux residues after soldering.PC. 10a multicore activated SURFACE PRESERVATIVE
is a pre-soldering coating for preserving the clean surfaces established by the PC. 80 Multicore Solvent Cleaner and PC. 2 Multicore Tarnish Remover. PC.10A does not need to be removed before soldering and in fact contributes to the efficiency of the soldering process. PC. 10A should be used whenever there is a delay between cleaning and soldering.

SEVEN STANDARD MULTICORE LIQUID FLUXES
are now available, five of which are new :PC. 21 A Multicore NonCorrosive Liquid Flux is normally recommended for wave, dip, brush. spray and roller flux application methods PC. 25 Multicore Rosin Foam Flux is designed for foam fluxing and exhibits an unusually stable foam with a fine bubble size.

PC. 52 MULTICORE PROTECTIVE COATING
is a lacquer which should be applied after soldering for protecting printed circuits from deterioration or failure in service. It can easily be soldered through if modifications or repairs are necessary at a later date.

> A typical Printed Circuit Soldering Process might contain some or all of these stages:
 mptypcion

azulyecs:
 conting

4Multicrore Solders Ltd., Hemel Hempstead, Hers. Phone: Hemel Hempstead 3636. Telex: : 23663.,

[^0]: - Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified
 - Not sensitive to voltage or temperature changes, within wide limits
 - Unaffected by waveform errors, load, power factor or phase shift
 - Operational on A.C., pulsating or interrupted D.C., and superimposed circults
 Need only low input power
 - Compact and self-contained
 - Rugged and dependable

[^1]: WM \qquad MN \qquad WN \qquad M

 ## Valradio

 ## DC-AC and DC-DC TRANSVERTORS

 For $110-220 V$ DC operation
 Fully transistorised and incorporating the latest high voltage (up to $1,500 \mathrm{~V}$) Transistors. Now available with outputs of up to 500 W . This range of eransoperating Transistorised Radio Telephones and orher electronic equipmen

 Now available for quick delivery:-

 | $\begin{gathered} \text { Type } \\ \text { BIIO/220/60RT } \end{gathered}$ | Input voles 110/270 | $\begin{aligned} & \text { Output } \\ & 12 V 5 A \text { or } 24 V 2.5 A D C \end{aligned}$ | Price 660 |
 | :---: | :---: | :---: | :---: |
 | B110/220/305 | $110 / 270$ | $115-230 \mathrm{~V} 30 \mathrm{~W} 50 \mathrm{~Hz}+-\frac{2}{2} \mathrm{~Hz}$ Slne wave | C48 |
 | B $110 / 270 / 605$ | 110/220 | $115-230 \mathrm{~V} 60 \mathrm{~W} 50 \mathrm{~Hz}+{ }_{-1}^{1} \mathrm{~Hz}$ Sine wave | 664 |
 | BIIO/220/60T | 110/220 | $115 / 220 \mathrm{~V} 60 \mathrm{~W} 50 \mathrm{~Hz}+-3 \mathrm{~Hz}$ Square wave | ¢44 |

 Similar units are available to operate from 12, 24 and $50 \mathrm{~V} D \mathrm{D}$ supplies.

 For further details send for leafles WCB
 VALRADIO LTD.
 ξ dept. wC8, browells lane, feltham, middlesex, england Teleghone: :01-890 4242 or 4837 \qquad ~~

[^2]: NAME

[^3]: * Independent Television Authority.

[^4]: * Marconi Instruments Lid

[^5]: ${ }^{1}$ "On Understanding Transistors" K. C. Johnson \boldsymbol{W}.W. Sept.-Oct. 1958

[^6]: * We were told of the companies helping to support research but not the names of students involved. Incidentally, the disquiet expressed in our leader has been underlined in a book "Warwick University Ltd" (Penguin, 6s Od) edited and written by people at that university. $E D$.

[^7]: The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

[^8]: *Dubilier Condenser Co. (1925) Ltd.

[^9]: * Ω / sq the resistance of a square of resistive material of uniform thickness as measured between two edges will be the same whatever the dimensions of the square. As the distance between edges increases the crosssectioned area of the resistive material aiso increases; one effect exactly cancels the other.-ED.

[^10]: Write or phone the
 Employment Superviso
 AC-Delco Division of General Motors Led.
 Dunstable, Beds. Tel: Dunstable 64264

